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Abstract

Spaces of data naturally carry intrinsic geometry. Statistics and machine
learning can leverage on this rich structure in order to achieve efficiency and
semantic generalization. Extracting geometry from data is therefore a fun-
damental challenge which by itself defines a statistical, computational and
unsupervised learning problem. To this end, symmetries and metrics are two
fundamental objects which are ubiquitous in continuous and discrete geom-
etry. Both are suitable for data-driven approaches since symmetries arise as
interactions and are thus collectable in practice while metrics can be induced
locally from the ambient space. In this thesis, we address the question of
extracting geometry from data by leveraging on symmetries and metrics. Ad-
ditionally, we explore methods for statistical inference exploiting the extracted
geometric structure. On the metric side, we focus on Voronoi tessellations and
Delaunay triangulations, which are classical tools in computational geometry.
Based on them, we propose novel non-parametric methods for machine learn-
ing and statistics, focusing on theoretical and computational aspects. These
methods include an active version of the nearest neighbor regressor as well
as two high-dimensional density estimators. All of them possess convergence
guarantees due to the adaptiveness of Voronoi cells. On the symmetry side,
we focus on representation learning in the context of data acted upon by a
group. Specifically, we propose a method for learning equivariant representa-
tions which are guaranteed to be isomorphic to the data space, even in the
presence of symmetries stabilizing data. We additionally explore applications
of such representations in a robotics context, where symmetries correspond
to actions performed by an agent. Lastly, we provide a theoretical analy-
sis of invariant neural networks and show how the group-theoretical Fourier
transform emerges in their weights. This addresses the problem of symmetry
discovery in a self-supervised manner.
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Sammanfattning

Datamängder innehar en naturlig inneboende geometri. Statistik och ma-
skininlärning kan dra nytta av denna rika struktur för att uppnå effektivitet
och semantisk generalisering. Att extrahera geometri ifrån data är därför en
grundläggande utmaning som i sig definierar ett statistiskt, beräkningsmäs-
sigt och oövervakat inlärningsproblem. För detta ändamål är symmetrier och
metriker två grundläggande objekt som är allestädes närvarande i kontinu-
erlig och diskret geometri. Båda är lämpliga för datadrivna tillvägagångssätt
eftersom symmetrier uppstår som interaktioner och är därmed i praktiken
samlingsbara medan metriker kan induceras lokalt ifrån det omgivande rum-
met. I denna avhandling adresserar vi frågan om att extrahera geometri ifrån
data genom att utnyttja symmetrier och metriker. Dessutom utforskar vi
metoder för statistisk inferens som utnyttjar den extraherade geometriska
strukturen. På den metriska sidan fokuserar vi på Voronoi-tessellationer och
Delaunay-trianguleringar, som är klassiska verktyg inom beräkningsgeometri.
Baserat på dem föreslår vi nya icke-parametriska metoder för maskininlär-
ning och statistik, med fokus på teoretiska och beräkningsmässiga aspekter.
Dessa metoder inkluderar en aktiv version av närmaste grann-regressorn samt
två högdimensionella täthetsskattare. Alla dessa besitter konvergensgarantier
på grund av Voronoi-cellernas anpassningsbarhet. På symmetrisidan fokuse-
rar vi på representationsinlärning i sammanhanget av data som påverkas av
en grupp. Specifikt föreslår vi en metod för att lära sig ekvivarianta repre-
sentationer som garanteras vara isomorfa till datarummet, även i närvaro av
symmetrier som stabiliserar data. Vi utforskar även tillämpningar av sådana
representationer i ett robotiksammanhang, där symmetrier motsvarar hand-
lingar utförda av en agent. Slutligen tillhandahåller vi en teoretisk analys
av invarianta neuronnät och visar hur den gruppteoretiska Fouriertransfor-
men framträder i deras vikter. Detta adresserar problemet med att upptäcka
symmetrier på ett självövervakat sätt.
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Chapter 1

Introduction

In this work more questions arise than answers given, for which of
course we do not apologize.

–Abstract of [1]

1.1 The Geometry of Data

Let us start with an illustrative example. Consider a dataset of images depicting
a scene from different points of view. The corresponding data lie in an ambient
space RP , where P is the finite set of sensor units of the camera – a combination
of pixels and channels accounting for color, depth, and so on. Such ambient space
is Euclidean of dimension |P | ≫ 0 proportional to the resolution of the camera.
However, the images depicting the scene can possibly belong only to a specific, tiny
submanifold X ⊆ RP . Indeed, since the camera is constrained to translate and
rotate in the three-dimensional physical world, X is diffeomorphic to the Carte-
sian product R3 × SO(3). In the latter, the first factor accounts for translations
while SO(3) is the space of three-dimensional rotations. Therefore, the intrinsic
space of data X is 6-dimensional independently of the resolution, and its topology
is non-trivial. Even further, the space R3 × SO(3) – and especially its translation
component R3 – carries a meaningful geometric structure: it is an isometric copy
of the three-dimensional Euclidean world.

The above example illustrates a general phenomenon concerning the nature of
data. Even though datasets typically manifest discretely in high-dimensional am-
bient spaces, they are constrained to low-dimensional submanifolds. Intuitively,
the ambient features – pixel-wise color values in the case of images – are highly
correlated by an (unknown) entangling mechanism underlying reality. The latter
constrains the intrinsic degrees of freedom of the space of ‘natural’ data, while glob-
ally deforming its topology. This defines a basic meta-statistical principle known

3
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Figure 1.1: A space of images of a scene from different points of view is intrinsically
diffeomorphic to R3 × SO(3).

as manifold hypothesis [2]. Crucially, data manifolds are typically equipped with
an additional intrinsic structure: they are geometric spaces. This means that fea-
tures such as distances and angles between data should be regarded as semantically
meaningful and can be leveraged for statistical inference. In the above example,
the metric structure of the translational component R3 encodes the geometry of
the world. Being able to isometrically map data to R3 × SO(3) enables the de-
termination of the (relative) pose of the camera. If we imagine the images to be
collected by an autonomous agent such as a human or a mobile robot, an isometric
map enables the latter to localize itself in the environment and to navigate therein.
Understanding the geometry of the world is a fundamental perceptual aspect that
serves as a basis for intelligent behavior, including reasoning and planning.

All this motivates the problem of extracting the geometry of the data manifold.
Therefore, the following general question will be the central focus of this thesis.

Question 1.1.1. How can the geometric structure of the data manifold be extracted
statistically and exploited for inference?

We refer to the problem raised by the question above as geometric inference.
This is in line with the terminology from deep learning literature [3], but abstracted
to a more general context. Indeed, Question 1.1.1 is vague and can be potentially
addressed via a wide spectrum of approaches, ranging from (high-dimensional)
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statistics, to computational geometry, to machine learning. To begin with, a foun-
dational challenge is clarifying the notion of ‘manifold’ on which geometric inference
is based upon. To this end, we isolate the following classes of notions, all of which
will be explored in this thesis.

• Discrete manifolds. In this case, a manifold is a discrete geometric object
representing the combinatorial incarnation of a space – typically a graph or,
more generally, a simplicial complex. Extracting geometry means construct-
ing a simplicial complex from a given dataset P . Methods in this direction
are mostly non-parametric, meaning that the simplicial complex is computed
directly from data without optimizing parameters of a statistical model.

• Fuzzy manifolds. Here, the notion of a manifold is relaxed in a probabilistic
sense i.e., it overlaps with that of a probability distribution. Datapoints in P
are interpreted as samples from the latter. This reduces geometry extraction
to a (high-dimensional) density estimation problem, which lies at the heart of
inferential statistics. A solution can be achieved via non-parametric methods
as well as parametric ones, in which case the probabilistic model is fit to data
via optimization.

• Smooth manifolds. This is the notion at the core of differential geometry,
which we consider here at an informal level. In this case, the data manifold is
modelled as an ideal continuous object, on which the dataset lies. Geometric
inference consists of finding a data representation i.e., a map φ : X → Z from
the ambient space of data to a copy of the data manifold Z, referred to as
latent space. The aim for the representation is preserving a given geometric
structure of data, making it emerge in the latent space. Once extracted, such
geometric structure can be exploited for addressing specific tasks over Z. As
compared to the original unstructured space X , inference in Z is potentially
geometry-aware and, therefore, significantly more reliable, robust, and effi-
cient. Methods adhering to this paradigm are usually highly parametric and
involve optimizing over (the parameters of) φ. The latter is typically a pow-
erful machine learning model, such as a deep neural network. The problem
of inferring φ is known in the literature as representation learning [4].

Extracting geometry from data rises several challenges, which are entailed in the
paradigms mentioned above. First, computational aspects are crucial since, gener-
ally speaking, the cost of computing geometric quantities is expected to increase
drastically as the (intrinsic) dimensionality grows. This phenomenon is known as
the curse of dimensionality [5], and is ubiquitous across statistics. In order to ben-
efit from geometric tools, it is therefore necessary to mitigate their computational
cost, especially in high dimensions. This applies mainly to non-parametric methods,
where inference is performed directly. On the other hand, optimization and even
data-driven supervision can mitigate the cost by circumventing the computation
of raw geometric features. The computational efficiency of simplicial complexes –
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together with their associated geometric and topological quantities — lies at the
heart of the fields of computational geometry and topology [6], respectively.

Second, it is necessary to clarify what kind of geometric structure needs to be
extracted and how. This depends inextricably on the type of data under consider-
ation. In some scenarios, the data manifold is naturally embedded in an ambient
space from which structure can be induced directly, such as distances between
points. In other instances, this is either unfeasible or leads to undesired results. In
the example discussed above, no obvious distance in the ambient space RP mim-
ics the intrinsic Euclidean geometry of X induced by the real world. This raises
the need for additional information to perform geometric inference, which can ei-
ther derive from prior knowledge around data or can be provided via some source
of supervision. To this end, collecting geometric information is realistic in sev-
eral practical scenarios, especially in the context of robotics. Indeed, autonomous
agents such as robots can discover the geometry of data via specific sensors. In
the example discussed above, a mobile robot collecting the images can access the
geometry of the world – and therefore of the data manifold – by odometric and in-
ternal measurements. These provide the distances and even the actions performed
by the robot while navigating, representing a supervisory signal which is rich with
intrinsic geometric information. Extracting structure by leveraging on the informa-
tion collected via interaction with the environment is a central aspect of embodied
intelligence known in the literature as interactive perception [7].

1.2 Symmetries and Metrics

In this thesis, we will address Question 1.1.1 by discussing a variety of methods
revolving around two concepts: symmetries and metrics. These are mathematical
tools that have been regarded as fundamental objects in geometry ever since Eu-
clid’s seminal treatise The Elements [8]. Both can be leveraged upon in order to
understand and extract the geometric structure of data. However, they profoundly
differ in their nature, leading to methods that diverge in context, assumptions, and
scope.

Metrics are quantities representing relative distances between datapoints. There-
fore, they are basic objects that can be exploited for geometric inference for several
reasons. First, distances can be induced on data directly from their ambient space –
at least locally – assuming the latter is a metric space (e.g., Euclidean), as commonly
happens. This avoids the need for supervision, making it possible to design fully
unsupervised metric-based methods. Nonetheless, in specific practical scenarios, su-
pervised methods are still relevant since distances can be realistically collected, for
example, as signals from sensors. Second, due to the elementary nature of metrics,
the latter are suitable for direct computations, leading to non-parametric methods.
Specifically, distances are core ingredients for several non-parametric constructions,
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for example of simplicial complexes and density estimators. These will be discussed
extensively in the present thesis.

Symmetries, on the other hand, represent invertible transformations of the data
manifold. Therefore, they are geometric objects exhibiting interesting algebraic
structures. The latter are described via the formalism of groups and group actions,
which lie at the foundation of the mathematical theory of symmetries. Due to their
rich structure, groups and symmetries have played a central role in the history
and philosophy of mathematics. Most notably, they were highlighted in Klein’s
Erlangen Program [9] – a visionary perspective on geometry elevating symmetries
as the main component of the notion of a space. Intuitively, symmetries determine
the quantities that are invariant with respect to them, which in turn can be re-
garded as the only features that are intrinsic to the geometry considered. In other
words, symmetries encode the entire geometric structure of spaces. This principle
at the core of the Erlangen Program inspires and motivates the effort of design-
ing symmetry-based methods for geometric inference. However, several challenges
arise from a statistical perspective. First, differently from metrics, symmetries are
typically unfeasible to infer from datapoints or their ambient space. Therefore,
either prior knowledge has to be assumed around the geometry of data – such as
in the case of group-theoretical convolutional neural networks [10] – or symmetry
information needs to be conveyed via supervision. This challenge is evident in the
motivating example at the beginning of this chapter, where symmetries are given
by change of perspective, resulting in highly non-linear and unpredictable image
transformations (see Figure 1.1). Yet, such transformations are intrinsically de-
scribed as rotations and translations, which, as mentioned before, can be collected
by an agent via sensors and leveraged as a supervisory signal for inference. Second,
in order to extract geometry via symmetries, it is necessary to deploy powerful
statistical tools such as deep neural networks. As a consequence, most symmetry-
based methods are highly parametric and fit into the paradigm of representation
learning discussed above. Specifically, the aim of representations in this context
is to extract geometry by preserving symmetries of data – a property known as
equivariance. This motivates the recent field of equivariant representation learning,
which will be a core focus of this thesis.

1.3 Contributions of the Thesis

In this thesis, we answer Question 1.1.1 by leveraging on metrics and symmetries
of data. We explore a variety of approaches and perform both theoretical and
empirical analyses. Our contributions range from non-parametric methods in high-
dimensional computational geometry and statistics (Papers A, B, C below), to
deep learning methods for equivariant representation learning (Papers D, E, F
below), to theoretical analysis of invariant learners (Paper G below). The fol-
lowing is the list of papers presented in this thesis. The symbol * denotes equal
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contribution.
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Chapter 2

Metric-Based Approaches

Geometry is the art of correct reasoning from incorrectly drawn figures.
–Henri Poincaré

Ever since the earliest approaches to geometry, distances have emerged as an
essential tool in the study of spaces. Indeed, a basic model of a geometry is a set
equipped with a distance function i.e., a metric space.

Definition 2.0.1. A metric space is a set X equipped with a distance function
d : X × X → R≥0 such that for all x, y, z ∈ X :

Definiteness Reflexivity Triangle Inequality
d(x, y) = 0 iff x = y d(x, y) = d(y, x) d(x, z) ≤ d(x, y) + d(y, z)

A map φ : X → X ′ between metric spaces is an isometry if it preserves distances
i.e., d(φ(x), φ(y)) = d(x, y) for all x, y ∈ X .

Distances are ubiquitous in mathematics, appearing in an extremely vast range
of scenarios. The most classical example of a metric space is the Euclidean one,
given by X = Rn equipped with the l2 distance. More generally, a fundamental
class of metric spaces is given by (complete) Riemann manifolds equipped with the
geodesic distance i.e., the length of the shortest path between two points.

In the following sections, we will outline methods in discrete mathematics, statis-
tics and machine learning aiming to extract geometry from data by leveraging on
metrics. More specifically, we will review constructions of simplicial complexes,
density estimators and representation learners in metric spaces. In the former two
cases, we will focus on non-parametric approaches avoiding parameter optimization
or Bayesian inference. The motivation is that optimization, although powerful, is
typically computationally expensive and rarely prone to mathematical analysis.
Instead, metrics enable explicit optimization-free construction due to their simplic-
ity and flexibility. This will enable us to analyze in detail the theoretical aspects

11
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of the non-parametric methods presented, such as computational complexity and
convergence. Lastly, for the most intricate constructions we will only discuss the
Euclidean case for simplicity. We envision that these approaches generalize to ar-
bitrary Riemannian manifolds, but leave it for future investigation as outlined in
Section 4.2.

2.1 Simplicial Complexes from Metrics

A natural way of answering Question 1.1.1 is by extracting from data a combina-
torial structure representing the discrete analogue of a manifold. Such structure is
known as simplicial complex. The latter is the central object of study of combina-
torial and computational topology, and has found major applications in topological
data analysis [6].

Definition 2.1.1. A simplicial complex with vertices P is a collection Σ of subsets
σ ⊆ P deemed simplices such that:

• All the singletons are simplices i.e., {p} ∈ Σ for all p ∈ P ,

• Σ is closed w.r.t. taking subsets i.e., if τ ⊆ σ ∈ Σ then τ ∈ Σ.

The dimension of a simplex σ ∈ Σ is |σ| − 1.

Intuitively, simplices are combinatorial atomic blocks from which the simplicial
complex is built as a whole. When all the simplices have dimension at most 1,
simplicial complexes coincide with (undirected) graphs.

In this section, starting from a finite dataset P ⊆ X in a metric space X , we
aim to define a simplicial complex with vertices P . A first example of a canonical
construction is the Vietoris-Rips complex, which depends on a parameter h ∈ R>0.
The simplices of the Vietoris-Rips complex are the subsets σ ⊆ P of diameter less
than h i.e., such that d(x, y) < h for all x, y ∈ σ (see Figure 2.2, left). Alternatively,
it is possible to build a simplicial complex by assigning a neighborhood to each
datapoint and by considering the resulting dual structure – a construction referred
to as Čech complex.

Definition 2.1.2. Fix a neighborhood p ∈ Up ⊆ X for each p ∈ P . The associated
Čech complex is the simplicial complex whose simplices are the subsets σ ⊆ P such
that ⋂

p∈σ

Up ̸= ∅. (2.1)

A basic example of neighborhoods in a metric space are balls, defined for a point
p ∈ P and a radius h ∈ R>0 as B(p, h) = {x ∈ X | d(x, p) < h}. The Čech complex
of balls for a given radius defines another standard construction of a simplicial
complex in a metric space (see Figure 2.2, center). This complex is relevant since,
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under technical assumptions on X , it is homotopically equivalent to ∪pUp ⊆ X in
an appropriate sense by the Nerve Theorem [18]. However, balls are uninformative
neighborhoods of datapoints from a geometric perspective. They do not adapt
around data and their geometry is controlled by the global radius parameter h. A
more adaptive and parameter-free alternative is given by Voronoi cells.

Definition 2.1.3. The Voronoi cell of p ∈ P is:

C(p) = {x ∈ Rn | ∀q ∈ P d(x, q) ≥ d(x, p)}. (2.2)

The Voronoi cells intersect at the boundary and cover the ambient space X .
The collection {C(p)}p∈P is referred to as Voronoi tessellation generated by P (see
Figure 2.1). The Čech complex of the Voronoi tessellation is referred to as Delaunay
triangulation (see Figure 2.2, right).

Figure 2.1: An example of a Voronoi tessellation.

Voronoi tessellations are a central object of study in computational geometry.
Although their systematic analysis in arbitrary dimensions dates to the beginning
of the 20th century [19], they sparingly appear in Descartes’ and Dirichlet’s work
[20, 21]. From a broader perspective, Voronoi tessellations represent the geometric
structure underlying the nearest neighbor search, sometimes referred to as ‘post-
office problem’ [22]. Therefore, they manifest – implicitly or explicitly – in methods
involving nearest neighbors, a classical examples of which is k-nearest neighbor
classification and regression [23]. For k = 1, the latter is defined as follows. Given
ground-truth values {yp}p∈P for datapoints, the unknown function generating the
values is estimated as:

f̃(x) = yp, p = argmin
p∈P

d(x, p). (2.3)

Therefore, the nearest neighbor regressor is locally constant over the Voronoi cells
and is undefined at their boundary. Overall, it constitutes an example of a simple
yet effective metric-based non-parametric regressor leveraging on the geometry of
Voronoi tessellations.
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Despite their simplicity and ubiquity, Voronoi tessellations and Delaunay tri-
angulations exhibit remarkable geometric properties. In order to illustrate this,
from now on we focus on Euclidean ambient spaces X = Rn for simplicity. In
this case, the Voronoi cells are arbitrary n-dimensional convex polytopes whose
k-dimensional boundaries are given by points in Rn equidistant to n − k + 1 dat-
apoints. For generic datasets P , this implies that the Delaunay triangulation is
an embedded simplicial complex, meaning that all the simplices have dimension at
most n and the convex hulls Conv(σ) of the n-dimensional simplices intersect only
at their boundaries. Even further, the Delaunay triangulation satisfies the following
fundamental property.

Proposition 2.1.1 (Empty Sphere Property; [24]). For generic datasets P ⊆ Rn,
the sphere passing through the vertices of an n-dimensional Delaunay simplex (i.e.,
the circumsphere) does not contain other datapoints in its interior. The Delaunay
triangulation is the only embedded simplicial complex covering Conv(P ) with this
property.

The intuition behind the empty sphere property is that Delaunay simplices tend
to avoid acute angles, since the latter would increase the radius of the correspond-
ing circumsphere. This geometric regularity of the Delaunay triangulation, together
with the fact that it comes with no hyperparameters, has motivated its usage in
a variety of constructions and methods. For example, the Delaunay triangula-
tion can be deployed to define a piece-wise linear interpolator by extending given
scalar values {yp}p∈P ⊆ R linearly over simplices. This interpolator is optimal in
a certain sense among all the piece-wise linear ones obtained from triangulations
of Conv(P ) [25, 26]. Moreover, low-dimensional (n = 2, 3) Delaunay triangulations
have found applications in computer graphics for the purpose of meshing and mesh
refinement. The goal of the latter is to progressively add vertices to a mesh in or-
der to increase the rendering quality. Ruppert’s algorithm [27] and Chew’s second
algorithm [28] are popular solutions to this problem, both relying on the idea of
adding circumcenters (i.e., vertices of Voronoi cells) of poorly-behaved Delaunay
triangles. Due to the Empty Sphere Property, these algorithms possess strong halt-
ing guarantees.

However, all the above-mentioned constructions of simplicial complexes raise a
computational challenge, especially in terms of memory. The number of simplices
in the Vietoris-Rips complex and the Čech complex of balls ranges from |P | for
h = 0 to 2|P | for h ≫ 0, of which the number of k-dimensional ones ranges from 0
to
( |P |

k+1
)

= O(|P |k+1). For the Delaunay triangulation, the number of simplices is
significantly lower, but still unfeasible to store in memory as the dimension n grows.
Namely, the number of n-dimensional simplices in the Delaunay triangulation is
bounded by (see [29]):(

|P | − ⌊ n+1
2 ⌋

|P | − n

)
+
(

|P | − ⌊ n+2
2 ⌋

|P | − n

)
= O

(
|P |⌈ n

2 ⌉
)
. (2.4)
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Vietoris-Rips Balls Delaunay

Figure 2.2: Three constructions of simplicial complexes from metric spaces.

The bound is strict since it is achieved when P lies on the n-dimensional moment
curve {(t, t2, · · · , tn)}t∈R ⊆ Rn. From an algorithmic perspective, the most popu-
lar method to compute the Delaunay triangulation is by lifting P to the standard
paraboloid in Rn+1, where simplices cover the lower convex hull [30]. The latter can
be computed by standard techniques from computational geometry, which however
scale exponentially in time complexity w.r.t. n [31]. Alternatively, a ray-casting
Monte Carlo Markov Chain approach has been recently proposed [32]. It consists
of randomly walking across the boundaries of Voronoi cells, collecting the vertices
found along the way together with their corresponding Delaunay simplices. This
yields an approximate stochastic technique with variable memory and time com-
plexity depending on the length and number of random walks performed.

In Paper A, we leverage on the geometry of the Delaunay triangulation for
the purpose of non-parametric active learning. The aim of the latter is updating
the dataset P iteratively via a querying procedure in order to improve the perfor-
mance of a given learner – see [33] for a survey. Specifically, we propose an active
querying procedure for the nearest neighbor regressor (Equation 2.3). Note that
non-parametric methods are particularly suitable for active learning since they are
unaffected by catastrophic forgetting – a persistent challenge of parametric learn-
ers [34]. This enables to query datapoints based on the geometry of the current
dataset alone, without retraining the given learner. Our method – deemed Active
Nearest Neighbor Regressor (ANNR) – is based on the intuition that the most in-
formative regions are the ones where the graph of the (estimated) function exhibits
the most variation. The latter is measured by the volume of the function’s graph,
discretized via the Delaunay triangulation. Formally, given the current dataset P
at some iteration of the algorithm, ANNR queries the circumcenter of the Delaunay
simplex σ maximizing (see Figure 2.3):

Vol (Conv(σ̂)) , (2.5)

where Conv denotes the convex hull and σ̂ ⊆ Rn+1 is the lifting of σ to the graph
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Figure 2.3: Illustration of the querying procedure of ANNR. The simplex maximizing
Equation 2.5 and its circumcenter are highlighted in orange.

of (a multiple of) the ground-truth function i.e., σ̂ = {(p, λyp)}p∈σ. Here, λ ∈
R>0 is a hyperparameter regulating the exploration-exploitation tradeoff typical of
active learning. We compute the volume in Equation 2.5 via the Cayley-Menger
determinant [35], while we sample the Delaunay simplices (together with their
circumcenters) via the approach from [32]. Note that the circumcenters of Delaunay
simplices correspond to the vertices of Voronoi cells, which in turn represent the
points where the nearest neighbor regressor is maximally discontinuous. ANNR
is inspired by the above-mentioned Ruppert’s and Chew’s algorithms for mesh
refinement in computer graphics. Intuitively speaking, collecting information for
the purpose of learning is analogous to refining the (high-dimensional) mesh given
by the graph of the estimated function. Similarly to mesh refinement, we prove
halting guarantees for ANNR by leveraging on the Empty Sphere Property of the
Delaunay triangulation.

2.2 Non-Parametric Density Estimation

An alternative way to address Question 1.1.1 is by extracting a fuzzy manifold from
data i.e., a probability density function. This results in a statistical rephrasing of
the question, reducing it to a density estimation problem. More precisely, assuming
that the metric space X is equipped with a Borel measure, we think of P as be-
ing sampled from an absolutely continuous probability distribution with unknown
density. The goal is recovering the latter by associating to P ⊆ X a probability
density function ρP ∈ L1(X ). This problem lies at the heart of inferential statistics
and can be approached from several perspectives. Similarly to the case of simpli-
cial complexes, we aim to discuss non-parametric approaches, together with their
theoretical properties. This means that we focus on density estimators providing
ρP in closed form by leveraging the geometric structure of X in an efficient manner.

The first historical example of a non-parametric density estimator is given by
histograms, dating back to the early days of statistics [36]. Given a tessellation of
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Histograms KDE VDE

Figure 2.4: Three classical non-parametric density estimators.

the ambient space X = ∪iCi into closed cells of finite volume intersecting at their
boundary, histograms estimate the density as

ρP (x) = |P ∩ C|
|P |Vol(C) , (2.6)

where C is the cell containing x. The density is therefore locally constant on the
cells and is undefined at their boundaries (which are assumed to be negligible). A
typical choice for the tessellation in the case X = Rn is the regular partition into
hypercubes of a given side length (see Figure 2.4, left). Histograms are computa-
tionally efficient: both the evaluation of the estimated density and sampling from
the latter take linear time w.r.t. the dataset size |P |. However, they do not enjoy
any geometrical nor statistical property because of their basic nature.

Arguably, the most widespread density estimator is the Kernel Density Estima-
tor (KDE) [37, 38]. Given a kernel K : X × X → R≥0 which is integrable in the
second variable, the estimated density is defined as

ρP (x) = 1
|P |Zp

∑
p∈P

K(p, x), (2.7)

where Zp =
∫

X K(p, y) dy. In other words, KDE is a uniform mixture of the
(unnormalized) densities K(·, p) for p ∈ P , and in particular it can be evaluated
and sampled from in linear time w.r.t. |P |. A typical expression for the kernel
is in the form K(p, x) = K

(
d(x,p)

h

)
, where K : X → R≥0 denotes by abuse of

notation a function with appropriate integrability properties while h ∈ R>0 is a
hyperparameter deemed bandwidth. For example, a standard choice is given by the
Gaussian kernel (see Figure 2.4, center):

K(d) = e−d2
. (2.8)
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The kernel represents a prior choice of a local geometry around data, which is
then averaged in order to obtain the estimated density. Intuitively speaking, KDE
can indeed be seen as the fuzzy analogue of the Čech complex, where the neigh-
borhoods Up are replaced by the soft neighborhoods given by the (unnormalized)
density K(·, p). To visualize this, compare the centers of Figure 2.2 and 2.4. The
bandwidth plays a role analogue to the radius in the Čech complex of balls i.e., it
controls the scale of the local geometry. The value of h crucially affects the estima-
tor by distributing the mass of the density around data or away from it. Bandwidth
selection is therefore a fundamental problem, and several heuristic rules have been
proposed to address it [39, 40]. Nonetheless, KDE suffers from the prior choice of
local geometry given by the kernel, negatively biasing the estimated density. An
exemplary mathematical consequence of this is the lack of convergence of KDE to
the ground truth density. Assuming P is sampled from ρ, ρP converges (in an
appropriate stochastic sense) as |P | → +∞ to the convolution between ρ and K.
Therefore, KDE does not converge to the ground-truth density unless the band-
width is chosen adaptively to P such that h → 0 at an appropriate rate [41]. The
latter intuitively annihilates the local geometric bias of KDE, recovering conver-
gence.

Analogously to simplicial complexes, in order to design a geometrically adaptive
density estimator it is convenient to deploy Voronoi tessellations. To this end, the
Voronoi Density Estimator (VDE) has been proposed [42]. The estimated density
is defined as inversely proportional to the volumes of Voronoi cells i.e.,

ρP (x) = 1
|P |Vol(C(p)) , (2.9)

where C(p) is the Voronoi cell containing x. The density is locally constant on
Voronoi cells and undefined at their (negligible) boundary. Therefore, VDE can be
intuitively understood as an adaptive version of histograms (compare with Equa-
tion 2.6). However, despite its geometric structure, VDE comes with a number of
shortcomings:

• Since the Voronoi cells can be unbounded, it is necessary to assume that the
measure over X is finite. This is not the case for the Lebesgue measure over
X = Rn, which is usually circumvented by restricting the measure to a chosen
compact subset A ⊆ X containing P .

• The volume of Voronoi cells is challenging to compute. Assuming X = Rn,
the latter are arbitrary convex polytopes, and determining their volume is
therefore a hard computational problem [43].

In Paper B, we introduce a new version of VDE addressing the challenges
above. The proposed density estimator – deemed Compactified Voronoi Density
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Estimator (CVDE) – is defined as:

ρP (x) = K(p, x)
|P |Zp

, (2.10)

where K is a kernel, Zp =
∫

C(p) K(p, y) dy and C(p) is the Voronoi cell containing
x. Therefore, CVDE amends for unbounded cells by deploying the local (unnormal-
ized) density K(p, ·), bridging the gap between KDE and VDE (see Figure 2.6, left).
In order to address the computational challenge of VDE, we propose to estimate the
volumes of Voronoi cells approximally via a Monte Carlo ray-casting approach. To
this end, we again focus on the Euclidean space X = Rn and rephrase the desired
integral in spherical coordinates as∫

C(p)
K(p, y) dy =

∫
Sn−1

∫ l(p+σ)

0
tn−1K(p, p+ tσ) dt︸ ︷︷ ︸

Conical Integral

dσ (2.11)

and approximate the right-hand side by sampling rays uniformly on the sphere
Sn−1. The conical integral in Equation 2.11 is performed over the ray originating
from p in the direction of σ and ending at the boundary of the Voronoi cell. Its
length is given by:

l(x) = sup
{
t ≥ 0 | p+ t

x− p

d(x, p) ∈ C(p)
}

= min
q ̸=p, lq(x)≥0

lq(x), (2.12)

where
lq(x) = d(q, p)2

2
〈

x−p
d(x,p) , q − p

〉 . (2.13)

We refer to Figure 2.5 for an illustration. Therefore, l(x) is computable in linear

Figure 2.5: Depiction of the rays and their lengths, involved in the construction of CVDE
and RVDE.

time w.r.t. |P |, making the cost of evaluating CVDE at a given point x ∈ Rn linear
w.r.t. both |P | and the number of Monte Carlo samples on the sphere. A similar
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CVDE RVDE

Figure 2.6: The two Voronoi density estimators introduced in this thesis.

technique known as hit-and-run can be used to sample from the estimated density.
Hit-and-run iteratively produces points on rays towards random directions, result-
ing in a Markov Chain stabilizing at the distribution given by the restriction of K
to C(p). These Monte Carlo ray-casting methods are analogous – and actually a
particular case of – the methods from [32] deployed to compute the Delaunay trian-
gulation in ANNR. In summary, these approximations mitigate the computational
burden of VDE, enabling its usage on datasets of large cardinality.

From a theoretical perspective, the main contribution of Paper B is a funda-
mental convergence result for estimators that are based on Voronoi tessellations
such as VDE and CVDE. By combining tools from high-dimensional Euclidean
geometry and measure theory, we formally prove the following.

Theorem 2.2.1. Suppose that P 7→ ρP is a density estimator over Rn satisfying
for all p ∈ P : ∫

C(p)
ρP (x) dx = 1

|P |
. (2.14)

Suppose moreover that the ground-truth density ρ has full support and consider the
estimated density ρP as being random in P sampled from ρ. Then as |P | → +∞,
ρP converges to ρ in distribution w.r.t. x and in probability w.r.t. P .

The above result highlights the geometric advantages of Voronoi tessellations
in terms of density estimation. Since the Voronoi cells adapt geometrically around
data, they force convergence to the ground-truth density as long as equal mass
is distributed on each cell by the estimator. Compared to KDE, this guarantees
convergence without the requirement for the bandwidth of the kernel to vanish
since, intuitively, the local geometry of the estimator adapts automatically via the
Voronoi cells.

While CVDE improves the computational cost of VDE, it is still more expensive
than KDE due to its dependency on the sampled rays over the sphere. Moreover, it
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exhibits the same jumping discontinuity as VDE at the boundary of Voronoi cells.
As a consequence, the estimated density is unstable and unsuitable for gradient-
based parametric extensions. Therefore, a natural challenge is designing a (non-
parametric) density estimator satisfying Equation 2.14 which is continuous and
more computationally efficient. To this end, in Paper C we propose a novel ap-
proach deemed Radial Voronoi Density Estimator (RVDE). Our core idea is to ob-
tain the desired condition expressed in Equation 2.14 by forcing the conical integral
in Equation 2.11 to be constant. To this end, we fix a radial kernel K : R → R≥0
and introduce (the inverse of) a radial bandwidth β : R>0 → R defined implicitly
by the integral equation: ∫ l

0
tn−1K(β(l)t) dt = α, (2.15)

where α > 0 is a hyperparameter. Assuming K satisfies a few technical conditions,
this equation possesses unique solution β(l) for all l > 0 which can be computed
numerically via, for example, the Newton-Raphson method. The estimated density
is then defined as (see Figure 2.6, right):

ρP (x) = K(β(l(x)) d(x, p))
α|P |wn

, (2.16)

where wn = Vol(Sn−1). Since l(x) is continuous in x and computable in linear
time w.r.t. |P |, the same holds for the estimated density. Additionally, it is possi-
ble to sample from the latter in linear time w.r.t. |P | by sampling uniformly along
rays around datapoints. Overall, RVDE simultaneously satisfies the aforementioned
continuity, efficiency, and convergence properties. One downside is the presence of
the hyperparameter α, which is analogous to the bandwith in KDE and requires to
be tuned. However, α comes with a geometric interpretation in that it controls the
distribution of the modes of RVDE. Indeed, we prove that the latter lie either on
the datapoints or on (the midpoints of) the edges of the Gabriel graph – an easily-
computable subgraph of the Delaunay graph – based on a threshold monotonically
determined by α. This inspires a hyperparameter selection procedure based on the
statistics of the Gabriel graph.

2.3 Metric and Contrastive Learning

Lastly, we discuss the representation learning methods relying on the metric struc-
ture of data. As anticipated in Chapter 1, a representation is simply a map
φ : X → Z, where Z is a space referred to as latent. Ideally, the aim of a rep-
resentation is forcing some intrinsic structure of data to emerge in the latent space.
Such structure can be leveraged upon for subsequent inference over Z. In metric
learning, the aim is preserving distances in X or, in other words, encouraging φ to
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be (as close as possible to) an isometry. Metric learning can be formulated as an
optimization problem as follows. Given a dataset P ⊆ X in a metric space and
a parametrized class of functions φθ with parameter θ ∈ Θ, such as deep neural
networks, the prototypical objective of metric learning is minimizing:

L(θ) = 1
|P |2

∑
(p,q)∈P ×P

| d(p, q) − d(φθ(p), φθ(q)) |. (2.17)

In the above, d denotes by abuse of notation the distance on both X and Z. In-
deed, L(θ) = 0 if and only if φθ is an isometry when restricted to P . Several
variations of this objective have been proposed, for example Sammon’s loss incor-
porating scale-invariance [44] and the triplet loss leveraging on three datapoints
simultaneously [45]. We refer the reader to [46] for a survey on metric learning.
Crucially, the latent space Z together with its metric is set a priori and constitutes
the fundamental design choice of metric learning. A variety of metrics beyond the
Euclidean one have been proposed for this purpose, for example hyperbolic metrics
for hierarchically-structured data [47] or the Cayley-Klein metric incorporating all
the uniform non-Euclidean geometries simultaneously [48]. On the other hand, the
distances between datapoints in P are typically induced from the ambient space of
data [49], after an eventual preprocessing involving building a simplicial complex
and taking geodesic distances over the latter [50]. As an alternative, in specific
practical scenarios distances can originate from some form of supervision such as
measurements collected via a sensor.

A popular representation learning paradigm related to metric learning is con-
trastive learning – see [51] for a survey. The overall aim is inferring representations
such that similar data lie close in the latent space while dissimilar ones lie far apart.
To this end, contrastive learning assumes that the dataset is organized in two sets
D+,D− ⊆ P×P , corresponding to similar and dissimilar pairs of datapoints respec-
tively. The desired structure in the representation is then enforced by minimizing
an objective in the following form:

L(θ) = 1
|D+|

∑
(p,q)∈D+

d(φθ(p), φθ(q)) − 1
|D−|

∑
(p,q)∈D−

d(φθ(p), φθ(q)). (2.18)

The above objective is classically referred as ‘siamese’ since it requires the same
function φ to be computed twice for each pair. The framework was originally in-
troduced in [52] and later expanded in [53]. Contrastive learning bears similarity
to metric learning in that the metric d over P is replaced by two binary relations
D± indicating, intuitively, whether data are close or far from each other. In sev-
eral scenarios, only a notion of similarity is available, raising the need to design
a contrastive learning framework relying on D+ alone. To this end, the second
summand of Equation 2.18 is replaced by a term encouraging data to spread apart
in Z or, in other words, φθ to be injective. This is necessary in order to avoid φθ
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collapsing to trivial degenerate solutions such as constant maps. A popular loss for
this purpose is a discrete entropy term, for example the (negative) soft minimum
distance between datapoints [54]:

log
∑

(p,q)∈P ×P

e−d(φθ(p), φθ(q)). (2.19)

Alternatives to the above term have been designed, including margin penalties over
the minimum distance – see [55] for an overview. Since entropy-like objectives are
well-behaved on bounded metric spaces, it is customary to deploy a compact latent
space Z, for example by normalizing the output of φθ on a sphere and by deploying
cosine similarity as the latent metric [56]. Lastly, it has been recently argued that
the additional term such as the one in Equation 2.18 might be completely omitted
by bootstrapping the learning dynamics [57].

Analogously to metric learning, the similar/dissimilar pairs in contrastive learn-
ing can be inferred unsupervisedly via clustering techniques or, more commonly,
can come from forms of supervision or domain knowledge. Data might be defined
to be similar if they belong to the same semantic class [52] or if they are obtained
from the same datum via a priorly-selected set of augmentations [57, 58]. Since
augmentations often correspond to (invertible) transformations of the data space,
in the latter case φθ learns a mapping which is invariant to such transformations.
This draws a connection between contrastive learning and symmetry-based machine
learning methods, which we will discuss in the next chapter.





Chapter 3

Symmetry-Based Approaches

All of mathematics is a tale about groups.
–Henri Poincaré

In this chapter, we discuss the problem of extracting geometry from data (Ques-
tion 1.1.1) by leveraging on their symmetries. Intuitively speaking, symmetries are
invertible transformations of a given space. Despite such an elementary premise,
they constitute a fundamental structure capturing the intrinsic geometry of the
data manifold. This has elevated symmetries as a central object of study in ge-
ometry, paving the way to their usage in the contemporary fields of statistics and
machine learning.

The importance of symmetries in mathematics has been highlighted in Klein’s
Erlangen Program – a foundational perspective initiated by a pioneering essay [9].
The grounding principle is that features and observables are relevant for a given
geometry if, and only if, they are invariant to the underlying symmetries. In other
words, symmetries characterize everything that is relevant to the geometric struc-
ture and, therefore, determine the geometry itself. For example, distances and
angles between points in a Euclidean space are relevant for rigid geometry but not
for linear algebra since they are invariant to isometries but not to all the linear
transformations. This has historically shifted the focus from a point-set view on
geometry to a symmetry-based one, ultimately leading to the development of the
theory of categories – an abstract approach to mathematics juxtaposing transfor-
mations of objects to the objects themselves [59]. In physics, an earlier consequence
of the Erlangen Program is marked by the discovery of special relativity. The lat-
ter was based on the observation that the principles of electromagnetism are not
invariant to the symmetries of the Euclidean geometry, but to the ones of the
(non-positive) four-dimensional Minkowsky metric. That is, the transformational
structure of physical equations implies that spacetime is naturally equipped with
a non-Euclidean metric, highlighting how symmetries determine geometry and not
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Figure 3.1: Two examples of group actions over image spaces.

vice versa.

Differently from Chapter 2, in what follows we will focus mainly on represen-
tation learning approaches. Indeed, symmetries are more elaborate mathematical
objects than metrics, involving sets of transformations with algebraic structure.
Therefore, they are less prone to non-parametric approaches, typically requiring
powerful machine learning tools such as deep neural networks. We will therefore
avoid discussing the computational properties of the methods presented, focusing
instead on foundational mathematical aspects. For example, we will address the
well-posedness of symmetry-based learning, providing theoretical guarantees for the
learning problems based on the nature of the available data.

3.1 The Mathematics of Symmetries

We start by introducing the mathematical formulation of the core concepts around
symmetries. Instead of defining the latter as single entities, it is convenient to
formalize the operations involving them. Indeed, symmetries can be inverted and
combined via composition in (at least) pairs. These operations and their properties
are axiomatized by the abstract algebraic object known as group.

Definition 3.1.1. A group is a set G equipped with a composition map G×G → G
denoted by (g, h) 7→ gh, an inversion map G → G denoted by g 7→ g−1, and a
distinguished identity element 1 ∈ G such that for all g, h, k ∈ G:

Associativity Inversion Identity
g(hk) = (gh)k g−1g = gg−1 = 1 g1 = 1g = g

A map ρ : G → G′ between groups is called homomorphism if ρ(gh) = ρ(g)ρ(h)
for all g, h ∈ G.
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Abstractly speaking, a symmetry is by definition an element of a group. Groups
satisfying gh = hg for all g, h ∈ G deemed commutative or, alternatively, Abelian.
Classical examples of discrete groups include the modular integers Z/N equipped
with addition (deemed the cyclic groups) and the permutations of a finite set
equipped with composition (deemed the symmetric group). A differentiable mani-
fold equipped with a group structure (with differentiable composition and inversion
maps) is deemed Lie group. Examples of the latter include the invertible opera-
tors GL(V ) of a finite-dimensional vector space V , together with its subgroup of
orthogonal operators O(V ) when V is a real Euclidean space and the subgroup of
unitary operators U(V ) when V is a complex Hilbert space.

Another fundamental concept in group theory is the one of group actions, which
formalize the concept of a space X having a given group of symmetries.

Definition 3.1.2. An action by a group G on a set X is a map G×X → X denoted
by (g, x) 7→ g · x, satisfying for all g, h ∈ G, x ∈ X :

Associativity Identity
g · (h · x) = (gh) · x 1 · x = x

In general, the following actions can be defined for arbitrary groups: G acts on
any set trivially by g·x = x, and G acts on itself seen as a set via (left) multiplication
by g · h = gh. Further examples are GL(V ) and U(V ) acting on V by evaluating
operators. Group actions induce classes in X by identifying points related by a
symmetry.

Definition 3.1.3. Consider the equivalence relation on X given by deeming x and
y equivalent if y = g · x for some g ∈ G. The induced equivalence classes are called
orbits, and the set of orbits is denoted by X/G.

For example, the orbits of the trivial action are singletons, while the multipli-
cation action has a single orbit. Intuitively, an orbit may be interpreted as an
invariant, maximal class of data induced by the symmetry structure.

Maps between spaces acted upon by the same group that preserve the corre-
sponding symmetries are deemed equivariant.

Definition 3.1.4. A map φ : X → Z between sets acted upon by G is called
equivariant if φ(g · x) = g · φ(x) for all g ∈ G, x ∈ X or, alternatively, if the
following diagram commutes for all g ∈ G:

X X

Z Z

g·

φ φ

g·
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An equivariant map φ is called invariant if G acts trivially on Z or, explicitly, if
φ(g · x) = φ(x). It is called isomorphism if it is bijective.

Figure 3.2: Convolutions are equivariant linear maps.

3.2 Group Convolutions

In this section, we discuss a fundamental class of linear equivariant maps, on which
several modern machine learning models are based upon. To begin with, we assume
that G is finite in order to avoid subtleties arising in functional analysis and mea-
sure theory. Everything that follows can be extended to general compact groups
with their corresponding Haar measure [60].

Consider the data space X = RG i.e., the free vector space generated by G. Its
elements (xg)g∈G can be interpreted as (scalar) signals over the symmetry group.
Such spaces are ubiquitous in applications since they encompass data ranging from
images, to sound, to colored meshes. For example, if G is a product of two cyclic
groups of modular integers G = (Z/H)× (Z/W ), X models the space of (grayscale)
images of resolution H × W . The fundamental algebraic aspect of X is that it is
equipped with the convolution product, given by:

(x ⋆ y)g =
∑
h∈G

xhyh−1g. (3.1)
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The convolution is associative, and it is commutative if, and only if, G is. Moreover,
G acts on X via g · x = δg ⋆ x = (xg−1h)h∈G, where δg is the canonical basis vector.
In other words, G permutes the domain coordinates of the signal. It is straightfor-
ward to see that for a fixed w, the map x 7→ x ⋆ w is equivariant (see Figure 3.2),
and it can be proven that any linear equivariant map X → X is of this form for an
appropriate w [61]. This has motivated the deployment of convolutions as (linear)
layers in machine learning models, with w as an optimizable parameter. In the
case of images, the original proposal dates back to [62] and has been popularized
by its usage in the ground-breaking image classifier AlexNet [63]. Convolutional
neural network layers for general groups have been introduced in [10, 64]. These
models have inspired a plethora of extensions and variations, most notably graph
neural networks [65] – models equivariant to automorphisms of the input graph.
This has ultimately led to attention mechanisms, which are equivariant to permu-
tations and are nowadays widely applied in various domains, ranging from natural
language processing [66] to vision [67]. From a broader perspective, the history of
deep learning suggests that the the principle of (linear) equivariance has been the
driving force in the development of contemporary neural architectures.

Even though convolutional layers are simple and effective machine learners, they
present a number of drawbacks. First, convolutions are (equivariant) transforma-
tions of X . As a consequence, the dimensionality of the (ambient space of) data
can not be reduced, limiting the expressivity and the compression capabilities of
the model. This is typically amended by introducing pooling operations [63], which
however break equivariance to an extent. Second, convolutions apply exclusively
to spaces of signals, on which G acts by permuting coordinates. This is not the
case in several scenarios, since the group action over data can be more complex and
even unknown a priori. For example, consider the scenario presented in Section 1.1
involving the group G = R3 × SO(3) acting on the space of images of a scene by
change of perspective (see Figure 3.1, right). Such an action deviates significantly
from pixel permutation: the colors change unpredictably as the field of view of the
image shifts across the environment. In this case, it is unreasonable to assume the
group action to be understood a priori since it would require perfect knowledge of
the given scene.

3.3 Equivariant Representation Learning

Based on the discussion in the previous section, we focus on the scenario where the
group action over X is unknown a priori and therefore needs to be inferred from
data. Indeed, we assume that the dataset D consists of a finite number of samples
from the group action i.e., triples of the form (x, g, y) ∈ X ×G× X with y = g · x.
The overall goal is learning a representation φ : X → Z which is (approximately)
equivariant. Here, Z the latent space equipped with a group action chosen a priori.
Given a parametrized class of functions φθ, θ ∈ Θ, such as deep neural networks,
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the prototypical objective of equivariant representation learning is minimizing:

L(θ) = 1
|D|

∑
(x,g,y)∈D

d(g · φθ(x), φθ(x)). (3.2)

In the above, d is a metric on Z or, more generally, a positive definite function. The
objective defined by Equation 3.2 is similar to the one of metric learning (Equation
2.17). Indeed, both the representation learning frameworks aim to preserve geo-
metric structure in the latent space – metrics and symmetries respectively. Note
that while the group action over G is assumed to be unknown, the group G itself,
together with the chosen latent action, is known and exploited for extracting the
representation. In other words, the algebraic structure of (latent) symmetries be-
haves as a prior in equivariant representation learning. This information is often
available in practice, as evident for example in the case of images of scenes (example
from Section 1.1), where the group is simply G = R3 × SO(3), independently from
the scene considered.

Several works have explored variations of Equation 3.2 and of the choice of the
latent group action. The first instance of equivariant representation learning dates
back to the introduction of Transforming Autoencoders [68]. In this case, the latent
space Z = Gd consists of a Cartesian product of several copies of G deemed ‘cap-
sules’, on which the group acts via multiplication. Even though the original work
focuses on G = R2 acting on images by translations of the visual plane, the princi-
ple is general and has been subsequently abstracted to arbitrary Lie groups [69]. As
an alternative, a number of works have focused on Euclidean latent spaces G = Rd

on which G acts by linear or affine transformations [70–72]. Even though linearity
results in simple representations, it limits their expressivity since the original group
action over X is rarely (isomorphic to) a linear one. Moreover, group convolutions
(see Section 3.2) have been in some cases deployed as a latent group action [73,74].
Finally, we mention that is possible learn a representation with an objective analo-
gous to Equation 3.2 without any prior knowledge around the group by training an
additional transition model T : Z×G → Z replacing the latent group action [75,76].
This, however, not only requires careful regularization in order to avoid trivial solu-
tions (e.g., constant φ), but lacks the geometric properties and guarantees deriving
from a group structure, which is crucial for our purposes.

In Paper D, we introduce a representation learner deemed Equivariant Isomor-
phic Network1 (EquIN) which is general and theoretically grounded. Specifically,
the foundational result is the following elementary yet profound fact from group
theory.

Proposition 3.3.1. Suppose that the action is free i.e., g · x = x implies g = 1.
Then the following holds:

1This nomenclature is introduced in Paper E, while the model is left unnamed elsewhere.
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• There is an equivariant isomorphism

X ≃ (X/G) ×G, (3.3)

where G acts trivially on the orbits and by multiplication on itself. In other
words, each orbit can be identified equivariantly with the group itself.

• Any equivariant map φ : (X/G) ×G → (X/G) ×G is a right multiplication
on each orbit i.e., for each orbit O ∈ X/G there is an hO ∈ G such that
φ(O, g) = (O′, ghO) for all g ∈ G. In particular, if φ induces a bijection on
orbits then it is an isomorphism.

Figure 3.3: Each orbit O is isomorphic to the coset space G/GO of the corresponding
stabilizer subgroup. In particular, for free actions the orbit is isomorphic to the group G
itself.

The above result not only describes X up to equivariant isomorphism, but en-
ables to learn an isomorphic representation due to its second claim. Based on the
latter, in EquIN we propose to set Z = E × G, where E is a space responsible for
representing orbit information while G is responsible for representing each orbit
individually. Since orbits are invariant while G acts on itself via multiplication,
given metrics dE and dG on E and G respectively, the objective from Equation 3.2
translates to:

L(θ) = 1
|D|

∑
(x,g,y)∈D

dE
(
φE

θ (y), φE
θ (x)

)︸ ︷︷ ︸
Invariant

+ dG

(
φG

θ (y), gφG
θ (x)

)︸ ︷︷ ︸
Multiplication−Equivariant

 . (3.4)

Here φE and φG denote the projections of φ to the corresponding latent Cartesian
factors. Note that φ is effectively a contrastive learner (see Section 2.3), whose
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positive pairs are data related by a symmetry or, in other words, belonging to the
same orbit. Therefore, in order to encourage injectivity of φE – which is also re-
quired by the second claim of Proposition 3.3.1 – it is necessary to introduce an
additional objective term such as the one from Equation 2.19.

The maps φE , φG are implemented as deep neural networks, and typically con-
sist of two output branches of the same shared model. Since the output space of
a neural network is Euclidean, a challenge is to design φG to produce elements
of G, which can have non-trivial topology. We address this by assuming that G
is a Lie group i.e., a differentiable manifold. This enables us to consider the Lie
algebra g, defined as the tangent space at 1 ∈ G. The Lie algebra maps to G
via the exponential map g → G, denoted by v 7→ ev. Although the exponential
map can be defined for general Lie groups by an appropriate ordinary differential
equation, for linear groups it is computed simply via the (Taylor-expanded) matrix
exponential. Based on this, φG first outputs elements of g, that are then mapped
to G via the exponential map. The same parametrization has been deployed in [77].

Proposition 3.3.1 requires the group action to be free. Even though this is
common in practice, it may occur that group elements stabilize datapoints. For
example, in the case of images depicting symmetric objects, rotations by specific
angles produce (almost) identical data (see Figure 3.4). This leads to the following
group-theoretical definition.

Definition 3.3.1. The stabilizer subgroup of a point x ∈ X w.r.t. an action by G
on X is:

Gx = {g ∈ G | g · x = x}. (3.5)

Figure 3.4: An example of a stabilizer.

Stabilizers of elements in the same orbit are conjugate, meaning that for each
x, y belonging to the same orbit O there exists h ∈ G such that Gy = hGxh

−1. By
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abuse of notation, we refer to the conjugacy class GO of stabilizers for O ∈ X/G.
The notion of a free action can be rephrased as the condition that all the stabilizers
are trivial, i.e., GO = {1} for every O. If the action over Z is not free while the one
over X is, there exists no equivariant map φ : X → Z. This raises the necessity
of designing a more general equivariant representation learning framework in the
presence of stabilizers. We address this in Paper E by extending EquIN to non-
free actions. The core idea is to rely on the following generalization of Proposition
3.3.1.

Proposition 3.3.2. The following holds:

• Each orbit O is isomorphic to the set of (left) cosets G/GO = {gGO | g ∈ G}.
In other words, there is an isomorphism:

X ≃
∐

O∈X /G

G/GO ⊆ 2G × X/G, (3.6)

where 2G denotes the power-set of G on which G acts by left multiplication
i.e., g ·A = {ga | a ∈ A}.

• Any equivariant map
φ : X →

∐
O∈X /G

G/GO (3.7)

inducing a bijection on orbits is an isomorphism.

This suggests a generalization of EquIN capable of taking stabilizers into ac-
count. Namely, instead of producing elements of G, φG is designed to output cosets
of stabilizers. This extends EquIN to non-free actions while preserving all of its the
theoretical guarantees. However, since the action is unknown a priori, such are the
stabilizer subgroups. In order to circumvent the explicit modeling of the stabilizers,
we propose to output arbitrary (finite) subsets of G. In other words, we replace
the component G of Z in the original version of EquIN with the (finite) power-set
2G. One can easily prove that if such subsets are minimal, they are guaranteed to
coincide with cosets of stabilizers, as desired. We enforce minimality by an addi-
tional loss term penalizing (discrete) entropy. Finally, the metric dG is chosen as a
distance between sets e.g., the Chamfer or the Hausdorff distance over G. Overall,
this describes our extension of EquIN to non-free group actions.

In the following sections, we draw both formal and informal connections between
equivariant representation learning and related fields of statistics and robotics.

3.4 Relation to Disentanglement and Causality

Equivariance is closely related to the concept of disentanglement in representation
learning. Intuitively, a representation is considered disentangled if a variation of a



34 CHAPTER 3. SYMMETRY-BASED APPROACHES

distinguished semantic factor in data is reflected by a change of a single component
in the latent space. For example, in the case of images depicting human portraits, a
semantic aspect might be hair and skin color, or the azimuth angle of the head. The
idea of disentanglement has been introduced informally in [4], followed by several
attempts of formalizing the notion rigorously. A popular line of research initiated
by [78] has proposed a statistical definition of disentanglement as the independence
of the marginals of the distribution induced by data on the latent space via the rep-
resentation. However, it has been shown that this notion is unsatisfactory since it
makes disentanglement mathematically impossible in an unsupersived and unbiased
manner [79]. The intuition is that statistical independence (of semantic factors) is
not an intrinsic structure of data since it is not invariant under the symmetries of
the distribution.

An alternative formulation of disentanglement based on symmetries and group
theory has been addressed in [80,81]. The presence of multiple semantic factors in
the data is formalized as an action on X by a decomposed group

G = G1 × · · · ×Gn, (3.8)

where each of the Cartesian componentsGi is responsible for the variation of a single
factor. This leads to the following symmetry-based definition of disentanglement.

Definition 3.4.1. A representation φ : X → Z is disentangled if:

• There is a Cartesian decomposition Z = Z1 ×· · ·×Zn, where each Zi is acted
upon trivially by the factors Gj with j ̸= i,

• φ is equivariant.

The definition above reduces the concept of disentanglement to the one of equiv-
ariance, corroborating the principle that preservation of symmetries leads to the
extraction of meaningful geometric structure in data. The symmetry-based ap-
proach has led to frameworks for learning and evaluating disentangled representa-
tions [82, 83]. EquIN adheres to this line of research since it automatically infers
disentangled representations in the sense of Definition 3.4.1. Indeed, assuming a
group as in Equation 3.8 acts freely on X , we set Zi = Gi. In order to account for
the remaining latent factor Z0 = E , a copy of the trivial group G0 = {1} can be
added to G without altering it up to isomorphism. The group G ≃ G0 × · · · ×Gn

acts on Z = E × G = Z0 × · · · × Zn as required for a disentangled latent space.
An analogous consideration applies to non-free actions, but requires the additional
hypothesis that the stabilizer subgroups also factorize into a product of subgroups
of the Gi’s, similarly to Equation 3.8.

From a broader perspective, the relation between equivariant representation
learning and disentanglement can be seen as an instance of a deeper analogy to
causal inference. The latter is an area of statistics aiming to discover and exploit
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Figure 3.5: In several scenarios, actions performed by an agent define a group action on
the space of perceived data.

the causal relations between factors in data. Classical principles from the field
have seen extensions and deployment in the context of representation learning – a
paradigm known as causal representation learning [84]. Now, the statistical formu-
lation of disentanglement can be seen as an elementary instance of causality since a
factorization into independent variables corresponds to a trivial causal graph with
no edges. The reformulation of the notion of disentangled representations via sym-
metries and equivariance is analogous to the usage of interventions – a central tool
for causal inference developed in Pearl’s do-calculus [85]. The latter is grounded in
the principle that interaction with the world is necessary in order to infer causal
relations. Proposition 3.3.1 and 3.3.2 are parallel to identifiability results in causal
representation learning [86, 87], which guarantee that the causal factors are in-
ferrable by observing interventions and their consequences. The parallel between
interventions and symmetries in the context of causal and equivariant representa-
tion learning respectively has been recently explored in the literature [87,88].

3.5 Relation to Robotics and Interactive Perception

In this section, we draw connections between equivariant representation learning
and robotic perception. To begin with, the focus of robotics are scenarios involv-
ing one or more agents (robots) that interact with the world, collect observations
via sensing and, typically, aim to solve a specified task. The problem of extract-
ing semantically-meaningful information from observations is known in robotics as
perception. At its essence, the goal of the latter is enabling the agent(s) to under-
stand the world, serving as a foundation for informed decision-making. Perception
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is therefore the core component of intelligent behavior and, perhaps counterintu-
itively, is regarded as more challenging than reasoning itself – a principle originally
formulated by Moravec in his celebrated paradox [89]. From a machine learning
perspective, the problem of perception corresponds to the one of representation
learning since both aim at extracting semantic structure from data. Now, the
ability of interacting with the environment is crucial to the end of perception. Ob-
serving consequences of its own actions enables the agent to gather insights into the
world and its structure. In particular, being able to predict the effects of interaction
enables the agent to plan, which is essential to solve decision-making tasks. This
principle has been explored in the robotics literature under the name of interactive
perception [7]. The latter, similarly to the above-mentioned do-calculus, highlights
the fundamental role of interaction for the purpose of semantic understanding.

The connection to equivariant representation learning is grounded in the fact
that symmetries can be seen as a form of interaction. In this sense, the group action
plays the role of the transition map for the environment’s states and, therefore, of
the observations perceived by the agent. For example, consider a locomotor robot
that can navigate an environment by translating and rotating its camera along a
single axis. The actions performed by the robot be seen as elements of the Lie group
R2 × SO(2), defining a group action on the space of images perceived by the robot
while navigating – see Figure 3.5 for an illustration. In a sense, this point of view
on symmetries is dual to the traditional one: they are seen as transformations of
the agent’s perspective as a consequence of its interaction with the environment. In
this analogy, the group corresponds to the action space of the agent. The assump-
tion from Section 3.3 that the group is known a priori is natural and practical since
it is related to the agent itself, independently of the environment or the interaction
between the two. Since a representation is an instance of a perception module,
equivariant representation learning can be regarded as addressing the problem of
interactive perception. Equivariance not only enables to predict the effect of inter-
actions in the latent space, but extracts the intrinsic geometry of the world. This
can be exploited by the agent to address specified tasks via simple geometric tools.

Motivated by this, in Paper F we explore applications to robotics of our equiv-
ariant representation learning framework described in Section 3.3. In particular, we
deploy geometric principles from control theory in conjunction with the representa-
tion inferred by EquIN in a robotic scenario. The overall goal is stabilizing a given
pre-trained policy by attracting it to in-distribution states whenever the agent de-
viates to out-of-distribution ones. In order to illustrate the approach, suppose for
simplicity that the group of symmetries consists of translations i.e., G = Rn. For
n = 2, 3, this is the case for a manipulator robot interacting with the environment
via its end-effector. Consider a policy π : X → Rn associating such translations to
the agent’s observations. We assume that π has been trained on a dataset P ⊆ X
to solve a given task, which is typically achieved via methods from offline reinforce-
ment learning [90]. Therefore, π is expected to perform well on states close to P
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(referred to as ‘in-distribution’), but to behave unexpectedly and to potentially fail
away from P (referred to as ‘out-of-distribution’). In order to redirect the agent
back to in-distribution states when the latter happens, we propose to introduce a
recovery policy given by:

π̃(x) = ∇zρ(φ(x)). (3.9)

Here, φ : X → Rn is a pre-trained EquIN model mapping observations to the
corresponding orbit, while ρ is a density estimator over P . Intuitively, ρ represents
an energy function, attracting the agent to the data P the original policy was
trained on. Note that in order for the density estimation to be meaningful, φ has
to be trained on task-independent data encompassing a broader range of states.
Even though this potentially requires a more extensive data collection in practice,
it makes the representation, together with the recovery policy π̃, transferable across
different tasks and policies π. In order to deal with multiple orbits, we condition
the density estimator ρ to the orbit of x. The latter is conveyed by some contextual
information, for example the initial state the agent observes when performing a
rollout. When ρ is a Gaussian Mixture Model, the conditioning is conveniently
implemented via a neural network, obtaining a model known as a Mixture Density
Model [91]. Lastly, the recovery policy is combined with the original into a mixture
policy given by:

σ(ρ(x)) π(x) + (1 − σ(ρ(x))) π̃(x), (3.10)

where σ(u) = (1 + e−u)−1 is a sigmoid function normalizing the density estimation
in order to softly determine which one among the two policies to follow. Overall,
our approach showcases how the geometry extracted via EquIN can be exploited
to address control problems simply and effectively.

3.6 Harmonic Analysis, Invariant Networks and Symmetry
Discovery

Symmetries and groups are closely related to harmonic analysis. Indeed, the Fourier
transform – together with its core properties – can be abstracted to general groups.
The Fourier transform has seen application at a fundamental level in several ar-
eas, both in its classical and group-theoretical version. These applications include
signal processing – in particular computer vision and image compression – and
computational algebra. Historically, the deployment of the Fourier transform and
convolutional filters in computer vision has motivated the initial introduction of
convolutions into deep learning, as discussed in Section 3.2. In what follows, we
briefly overview the principles of group-theoretical harmonic analysis, focusing on
finite groups. For a comprehensive treatment, see [60]. In particular, similarly to
Section 3.2, we consider the complex vector space X = CG freely generated by
elements of a finite group G. This space consists of (complex-valued) signals over
G, and carries the structure necessary for the Fourier transform to be defined.
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To begin with, consider an Abelian group G. In this case, harmonics are ab-
stracted as homomorphisms G → U(1) valued in unitary complex scalar, leading
to the following definition.

Definition 3.6.1. The dual G∨ of G is the set of homomorphisms ρ : G → U(1).
It is itself a group when equipped with the point-wise composition ρµ = ρ⊙ µ or,
explicitly, (ρµ)(g) = ρ(g)µ(g) for g ∈ G.

When CG is endowed with the canonical scalar product ⟨x, y⟩ =
∑

g∈G xgyg,
G∨ ⊆ CG forms an orthogonal basis with all the norms equal to |G|. The linear
base-change is, by definition, the Fourier transform over CG.

Definition 3.6.2. The Fourier transform is the map CG → CG∨ , x 7→ x̂, defined
for ρ ∈ G∨ as:

x̂ρ = ⟨ρ, x⟩. (3.11)

The Fourier transform is a linear isometry (i.e., a unitary operator) up to a
multiplicative constant of |G| and it exchanges the convolution product ⋆ over CG

(see Equation 3.1) with the Hadamard product ⊙ over CG∨ . Definition 3.6.2 gen-
eralizes the usual (discrete) Fourier transform in the following sense. If G = Z/NZ
is the group of modular integers, then the dual G∨ consists of homomorphisms of
the form

Z/N ∋ g 7→ e2π
√

−1gk/N (3.12)

for k ∈ {0, · · · , N − 1}. Equation 3.11 specializes then to the familiar definition of
the Fourier transform.

All the construction above can be extended to non-Abelian groups, but require
more advanced technical tools. In a nutshell, harmonics are generalized to ‘matrix-
valued’ maps i.e., unitary representations. The latter are defined as homomorphisms
ρV : G → U(V ), where V is finite-dimensional complex Hilbert space. Unitary
representations that are irreducible w.r.t. direct sum decompositions form a finite
set Irr(G), and the Fourier transform is a map CG →

⊕
ρV ∈Irr(G) End(V ) defined

analogously to Equation 3.11. Here, End(V ) denotes the space of linear operators
over V .

Strikingly, harmonics have been observed to emerge in both biological and ar-
tificial neural networks. More specifically, the synaptic response of neurons known
as simple cells in the primary visual cortex of the brain can be modelled via Ga-
bor wavelets [92] – a localized version of planar harmonics. Similarly, the filters
learned by convolutional neural networks on image classification tasks resemble Ga-
bor wavelets and harmonics [93]. This suggests a deep connection between machine
learning and harmonic analysis that is consistent throughout a variety of models and
scenarios. One mathematical explanation to this phenomenon has been attributed
to the statistics of data. Assuming that the data manifold (e.g., natural images) is
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Figure 3.6: Weights learned by a rotation-invariant neural network resemble circular
harmonics.

concentrated around a given vector basis (e.g., the Gabor/Fourier basis), a linear
generative model can recover the latter unsupervisedly via a sparsity prior [94,95].
This however not only does not explain the emergence of harmonics beyond the
generative setting – such as image classification tasks – but in turn relies on an
unexplained and specific assumption around the statistics of data. In Paper G,
we offer an alternative explanation to the emergence of harmonics in the weights
of neural networks based on an algebraic group-theoretical argument. Specifically,
we prove that if a machine learning model of a certain kind is invariant to the
action by G on CG, then its weights (i.e., the learner’s parameters) coincide with
the group-theoretical Fourier transform of G (up to appropriate adjustments). We
therefore argue that the Fourier transform emerges in both biological and artificial
learning systems due to invariance, which is a natural bias that can be induced im-
plicitly from data or encouraged explicitly via contrastive learning (see Section 2.3).

We now outline the main result. To this end, let V1, · · · , Vk be finite-dimensional
Hilbert spaces and consider the space:

Θ = CG ⊗
⊕

i

End(Vi). (3.13)

The above represents the space of parameters of a complex-valued machine learn-
ing model. Specifically, CG corresponds to the input space, while each End(Vi)
represents a computational unit processing matrix-valued signals. The latter are
commonly referred to as capsules [96] and will be necessary for the emergence of
the Fourier transform in the non-Abelian case. The space Θ carries actions by G
– affecting the left tensor factor – and by U(Vi) for each i – affecting the direct
summands. In order to prove our result, we introduce the following abstract prop-
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erty for learners. In order to prove our result, we introduce the following abstract
property. Let H be a set.

Definition 3.6.3. We say that a map φ : Θ → H has unitary symmetries if for
θ, θ′ ∈ Θ of the same norm, φ(θ) = φ(θ′) implies that for each i there exists a
unitary operator Ui ∈ U(Vi) such that θi = Ui · θ′

i.

In the above, φ represents a machine learning model with parameter space Θ
while H represents the space of functions parametrized by the learner – typically
referred to as ‘hypothesis space’. Intuitively, Definition 3.6.3 requires that only
parameters related by unitary symmetries can correspond to the same hypothesis.
We show that several common learners have unitary symmetries, including Spectral
Networks [97], McCulloch-Pitts neurons and, to some extent, deep neural networks.
The main result in Paper G is the following.

Theorem 3.6.1. Suppose that φ : Θ → H has unitary symmetries and that for
some θ ∈ Θ the following holds:

• φ(g · θ) = φ(θ) for all g ∈ G.

• θ, seen as a linear map ⟨G⟩ →
⊕

i End(Vi), is surjective.

Then for every i there exist θ′
i ∈ End(Vi) and an irreducible unitary representation

ρi : G → U(Vi) such that for all g ∈ G,

θi(g) = θ′
i ρi(g)†. (3.14)

When H is a space of functions with domain CG and φ satisfies an adjunction
property, the first assumption of Theorem 3.6.1 translates into invariance to G in
the input space CG. With an additional orthogonality condition for θ, the full
Fourier transform can be recovered. Overall, Theorem 3.6.1 shows how unitary
representations, i.e. harmonics in a broader sense, arise from invariance to a given
arbitrary finite group.

Since the Fourier transform encodes all the algebraic information around G,
our results enable to recover the group structure (up to isomorphism) from the
parameters of an invariant model with unitary symmetries. Even further, we show
that this procedure is robust. Specifically, the group recovery guarantees hold even
when the invariance assumption is relaxed according to certain explicit functional
bounds. Extracting the group structure offers a tool for symmetry discovery – a
problem consisting of inferring symmetries of data with minimal supervision [98,99].
Discovering symmetries is a form of structure extraction that enables to perform
inference in cases when the group G is unknown a priori. The latter is a crucial as-
sumption of all the symmetry-based approaches previously discussed in this thesis.
The results in Paper G represent a first step to address these limitations, albeit
within specific assumptions and context.



Chapter 4

Conclusions, Limitations and
Future Work

I do not understand the definition of a Gorenstein ring.
–Daniel Gorenstein

4.1 Conclusions

In this thesis, we have addressed the problem of extracting geometry from data and
deployed it for statistics and machine learning. We discussed methods leveraging on
symmetries and metrics – two fundamental objects arising in both continuous and
discrete geometry. From the metric side, we have discussed novel non-parametric
methods based on the Voronoi tessellations and Delaunay triangulations. These
include an active learning version of the nearest neighbor regressor as well as two
Voronoi density estimators. We have formally shown how the adaptive geometry
of Voronoi cells implies convergence guarantees for the proposed methods. On the
symmetry side, we have focused on equivariant methods in representation learn-
ing. We have proposed a general equivariant representation learning framework
suitable for data acted upon arbitrary (Lie) groups. The method is guaranteed
to infer isomorphic representations, even in the challenging scenario when symme-
tries can stabilize data. We have additionally explored applications of the resulting
representations to robotics. Lastly, we have analyzed theoretically the problem
of symmetry discovery, showing that a class of learners, if invariant, extracts the
Fourier transform together with the group structure of the underlying symmetries.

4.2 Limitations and Future Work

The material presented in this thesis is subject to a number of limitations and leaves
questions open, tracing directions for future investigation.
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Regarding metric-based approaches, Papers A, B and C focus on non-parametric
methods. Although, as discussed in Section 2, this avoids the computational burden
inherent in optimization, parametric methods can be advantageous because of their
flexibility and expressivity. As a line of future investigation, we therefore envision
extensions to the parametric setting. Since optimization is typically performed via
gradient descent, a core challenge lies in designing differentiable versions of these
methods and computing their derivatives. For Voronoi-based density estimators
such as our CVDE and RVDE, this extension would be analogous to how Mixture
Models generalize KDE by optimizing the parameters of the kernel – in particular
its centers P . Note that differentiating w.r.t. P is particularly challenging since
it involves deriving geometric quantities i.e., Voronoi tessellations. As suggested
in [100], this can be addressed by appealing to the Reynolds transport theorem,
but is affected by geometric singularities such as multiple points of P overlapping.
On a similar note, designing density estimators which are differentiable w.r.t. the
ambient point x is interesting and useful in situations requiring optimizing the
density itself and/or performing its gradient. For example, this is crucial in the
construction of the recovery policy from Paper F (see Equation 3.9). Note that
even though RVDE is continuous w.r.t. x, it is inherently singular at the bound-
aries of Voronoi cells, which represents a major limitation from this perspective.
Constructing a differentiable – and even smooth – Voronoi-based density estimator
is a challenge which would require an approach alternative to those involved in
defining CVDE and RVDE.

Another aspect of the metric-based methods discussed in this thesis which is
worth exploring is their extension to more general metric spaces than the Euclidean
one – in particular Riemannian manifolds. This is interesting since non-Euclidean
manifolds often arise in statistics and machine learning. For example, data on
spheres are the object of study of directional statistics [101], hyperbolic spaces
are routinely deployed to represent hierarchical data [47], Lie groups are central
for equivariant representation learning and pose estimation as discussed in Section
3.3, and even complex projective spaces arise as Kendall shape spaces in computer
vision [102]. Even though Voronoi tessellations are defined and well-behaved on
Riemannian manifolds, most of the techniques discussed in this thesis rely on Eu-
clidean geometry, in particular the proofs of theoretical results such as Theorem
2.2.1. These would require a careful extension to the general Riemannian setting.
Moreover, the ray-casting techniques involved in ANNR, CVDE and RVDE would
need to be adapted by deploying the Riemannian exponential map and by taking
the curvature of the manifold into account.

Regarding symmetry-based approaches, we highlight a limitation arising from
the group-theoretical formulation. In order to illustrate this, consider the concrete
setting from Section 3.5 where an agent interacts with an environment, with the
group of symmetries corresponding to the agent’s action space. Assume that the
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environment is dynamic to some extent i.e., it can change (part of) its state as a
consequence of interaction. For example, this happens when a robot collides with a
physical object, displacing the latter. In this case, the transition map of (the agent’s
observations of) the environment is not a group action. Indeed, suppose that a
mobile robot collides with an object while performing a path g1, · · · , gn ∈ G starting
from x ∈ X . If the robot can reach the same position while avoiding the collision by
performing another path, say h1, · · · , hk ∈ G, then it holds that g1 · · · gn = h1 · · ·hn

but (g1 · · · gn) · x ̸= (h1 · · ·hk) · x. An algebraic interpretation of this phenomenon
is that the associativity condition from Definition 3.1.1 does not hold since the
paths g•, h• do not coincide. This raises the need of generalizing the theory and
methods from Section 3.3 in order to accommodate dynamic environments. A
first step in this direction has been made in Paper X-3 (not included in this
thesis), where we consider generalized equivariant representations in the context of
interactions with rigid physical objects and prove an analogue of Proposition 3.3.1 in
this context. This approach is however limited to the specific dynamics considered.
In order to address the problem in general, the above discussion suggests that a
natural possibility is replacing the group G by the space of its paths, which acts
on X . This is however an intractable infinite-dimensional space whose action is
non-free since any closed path that does not affect the environment is a stabilizer.
On the high level, this scenario is reminiscent of the monodromy action of the
fundamental groupoid (i.e., the path space up to homotopy) of a topological space
over its coverings [103]. Monodromy might provide both inspiration and tools to
address the problem, drawing connections between homotopy theory and interactive
perception. This however falls beyond the scope of this thesis, and we leave it as a
line for future investigation.





Chapter 5

Summary of Included Papers

This chapter contains the abstracts of the included papers and the contributions
by the author of this thesis. The symbol * denotes equal contribution.

Paper A

Active Nearest Neighbor Regression Through Delaunay Refinement

A. Kravberg*, G. L. Marchetti*, V. Polianskii*, A. Varava,
F. T. Pokorny, D. Kragic.

In International Conference on Machine Learning (ICML), 2022.

Abstract: We introduce an algorithm for active function approximation based on
nearest neighbor regression. Our Active Nearest Neighbor Regressor (ANNR) relies
on the Voronoi-Delaunay framework from computational geometry to subdivide the
space into cells with constant estimated function value and select novel query points
in a way that takes the geometry of the function graph into account. We consider
the recent state-of-the-art active function approximator called DEFER, which is
based on incremental rectangular partitioning of the space, as the main baseline.
The ANNR addresses a number of limitations that arise from the space subdivision
strategy used in DEFER. We provide a computationally efficient implementation
of our method, as well as theoretical halting guarantees. Empirical results show
that ANNR outperforms the baseline for both closed-form functions and real-world
examples, such as gravitational wave parameter inference and exploration of the
latent space of a generative model.

Contributions by the author: co-designed the method, provided the mathe-
matical formulation and the theoretical analysis, designed and implemented the
deep learning experiment, wrote the majority of the paper (excluding parts of the
experimental section and of the introduction).
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Paper B

Voronoi Density Estimator for High-Dimensional Data:
Computation, Compactification and Convergence

V. Polianskii*, G. L. Marchetti*, A. Kravberg, A. Varava,
F. T. Pokorny, D. Kragic.

In Uncertainty in Artificial Intelligence (UAI), 2022.

Abstract: The Voronoi Density Estimator (VDE) is an established density estima-
tion technique that adapts to the local geometry of data. However, its applicability
has been so far limited to problems in two and three dimensions. This is because
Voronoi cells rapidly increase in complexity as dimensions grow, making the nec-
essary explicit computations infeasible. We define a variant of the VDE deemed
Compactified Voronoi Density Estimator (CVDE), suitable for higher dimensions.
We propose computationally efficient algorithms for numerical approximation of
the CVDE and formally prove convergence of the estimated density to the original
one. We implement and empirically validate the CVDE through a comparison with
the Kernel Density Estimator (KDE). Our results indicate that the CVDE and the
KDE are comparable at their best performance and that the CVDE surpasses the
KDE under arbitrary bandwidth selection.

Contributions by the author: co-designed the method, provided the mathemat-
ical formulation and the theoretical analysis, co-designed the experiments, wrote
the majority of the paper (excluding parts of the experimental section and of the
computational section).
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Paper C

An Efficient and Continuous Voronoi Density Estimator

G. L. Marchetti, V. Polianskii, A. Varava, F. T. Pokorny, D. Kragic.
In International Conference on Artificial Intelligence and

Statistics (AISTATS), 2023.

Abstract: We introduce a non-parametric density estimator deemed Radial Voronoi
Density Estimator (RVDE). RVDE is grounded in the geometry of Voronoi tessella-
tions and as such benefits from local geometric adaptiveness and broad convergence
properties. Due to its radial definition RVDE is continuous and computable in lin-
ear time with respect to the dataset size. This amends for the main shortcomings
of previously studied VDEs, which are highly discontinuous and computationally
expensive. We provide a theoretical study of the modes of RVDE as well as an em-
pirical investigation of its performance on high-dimensional data. Results show that
RVDE outperforms other non-parametric density estimators, including recently in-
troduced VDEs.

Contributions by the author: designed the method and its implementation,
provided the mathematical formulation and the theoretical analysis, designed the
experiments, wrote the entire paper.
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Paper D

Equivariant Representation Learning via Class-Pose Decomposition

G. L. Marchetti*, G. Tegnér*, A. Varava, D. Kragic.
In International Conference on Artificial Intelligence and

Statistics (AISTATS), 2023.

Abstract: We introduce a general method for learning representations that are
equivariant to symmetries of data. Our central idea is to decompose the latent
space into an invariant factor and the symmetry group itself. The components se-
mantically correspond to intrinsic data classes and poses respectively. The learner is
trained on a loss encouraging equivariance based on supervision from relative sym-
metry information. The approach is motivated by theoretical results from group
theory and guarantees representations that are lossless, interpretable and disen-
tangled. We provide an empirical investigation via experiments involving datasets
with a variety of symmetries. Results show that our representations capture the
geometry of data and outperform other equivariant representation learning frame-
works.

Contributions by the author: designed the method and its implementation,
provided the mathematical formulation and the theoretical analysis, co-designed the
experiments, wrote the majority of the paper (excluding parts of the experimental
section and of the introduction).
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Paper E

Equivariant Representation Learning in the Presence of Stabilizers

L. A. P. Rey*, G. L. Marchetti*, D. Kragic, D. Jarnikov, M. Holenderski.
In European Conference on Machine Learning (ECML-PKDD), 2023.

Abstract: We introduce Equivariant Isomorphic Networks (EquIN) – a method for
learning representations that are equivariant with respect to general group actions
over data. Differently from existing equivariant representation learners, EquIN is
suitable for group actions that are not free, i.e., that stabilize data via nontrivial
symmetries. EquIN is theoretically grounded in the orbit-stabilizer theorem from
group theory. This guarantees that an ideal learner infers isomorphic represen-
tations while trained on equivariance alone and thus fully extracts the geometric
structure of data. We provide an empirical investigation on image datasets with
rotational symmetries and show that taking stabilizers into account improves the
quality of the representations.

Contributions by the author: co-designed the method, provided the mathemat-
ical formulation, co-designed the experiments and implemented the model, wrote
the majority of the paper (excluding parts of the experimental section).
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Paper F

Back to the Manifold: Recovering from Out-of-Distribution States

A. Reichlin, G. L. Marchetti, H. Yin, A. Ghadirzadeh, D. Kragic.
In International Conference on Intelligent Robots and Systems (IROS), 2022.

Abstract: Learning from previously collected datasets of expert data offers the
promise of acquiring robotic policies without unsafe and costly online explorations.
However, a major challenge is a distributional shift between the states in the train-
ing dataset and the ones visited by the learned policy at the test time. While prior
works mainly studied the distribution shift caused by the policy during the offline
training, the problem of recovering from out-of-distribution states at the deploy-
ment time is not very well studied yet. We alleviate the distributional shift at the
deployment time by introducing a recovery policy that brings the agent back to
the training manifold whenever it steps out of the in-distribution states, e.g., due
to an external perturbation. The recovery policy relies on an approximation of the
training data density and a learned equivariant mapping that maps visual observa-
tions into a latent space in which translations correspond to the robot actions. We
demonstrate the effectiveness of the proposed method through several manipulation
experiments on a real robotic platform. Our results show that the recovery policy
enables the agent to complete tasks while the behavioral cloning alone fails because
of the distributional shift problem.

Contributions by the author: co-designed the method and its implementa-
tion, provided the mathematical formulation, wrote parts of the paper (mainly the
methodological section).
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Paper G

Harmonics of Learning: Universal Fourier Features Emerge in
Invariant Networks

G. L. Marchetti, C. Hillar, D. Kragic, S. Sanborn.
Preprint. Available on ArXiv: https://arxiv.org/abs/2312.08550.

Abstract: In this work, we formally prove that, under certain conditions, if a
neural network is invariant to a finite group then its weights recover the Fourier
transform on that group. This provides a mathematical explanation for the emer-
gence of Fourier features – a ubiquitous phenomenon in both biological and artificial
learning systems. The results hold even for non-commutative groups, in which case
the Fourier transform encodes all the irreducible unitary group representations.
Our findings have consequences for the problem of symmetry discovery. Specif-
ically, we demonstrate that the algebraic structure of an unknown group can be
recovered from the weights of a network that is at least approximately invariant
within certain bounds. Overall, this work contributes to a foundation for an alge-
braic learning theory of invariant neural network representations.

Contributions by the author: provided the mathematical formulation and the
theoretical analysis, designed and implemented the experiments, wrote the majority
of the paper (excluding parts of the introduction).
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Abstract

We introduce an algorithm for active function approximation based on
nearest neighbor regression. Our Active Nearest Neighbor Regressor (ANNR)
relies on the Voronoi-Delaunay framework from computational geometry to
subdivide the space into cells with constant estimated function value and se-
lect novel query points in a way that takes the geometry of the function graph
into account. We consider the recent state-of-the-art active function approxi-
mator called DEFER, which is based on incremental rectangular partitioning
of the space, as the main baseline. The ANNR addresses a number of lim-
itations that arise from the space subdivision strategy used in DEFER. We
provide a computationally efficient implementation of our method, as well as
theoretical halting guarantees. Empirical results show that ANNR outper-
forms the baseline for both closed-form functions and real-world examples,
such as gravitational wave parameter inference and exploration of the latent
space of a generative model.

A.1 Introduction

The need to actively approximate a function by iteratively querying novel points
from its domain appears in a variety of theoretical and experimental areas, such as
modern physics and astronomy [1,2], chemistry [3, 4] and density estimation [5–7].

A1
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Figure A.1: The ANNR progressively approximating a Gaussian function. The approxi-
mation is depicted in blue-scale, with the ground-truth function plotted in the lower-right
corner. The Delaunay triangulation is depicted in black as well.

Typically, the function to be approximated is not explicitly known, but can be eval-
uated at arbitrary points from its domain. Such formulation poses two intertwined
problems: selecting points for evaluation (queries), and performing interpolation
given a dataset with known function values. For the former, naive approaches such
as sampling uniformly from the domain are computationally infeasible, especially
for sparse and high-dimensional functions. Function evaluation is often expensive in
real-life applications, as querying a single data point might require running a time-
or resource-consuming experiment. It is thus crucial to design efficient strategies
for selecting points to evaluate the function upon.

Recently, a scalable function approximator employing active querying has been
proposed under the name DEFER [8]. It relies on a rectangular partitioning of
the ambient space with the datapoints being the centers of the partitions, and ap-
proximates the (density) function piecewise constantly on each rectangle. DEFER
outperforms state-of-the-art sampling methods in parameter inference tasks as well
as in arbitrary function approximation. It is worth noting that despite [8] generally
address density estimation problems, DEFER is effectively an active function ap-
proximator and differs from traditional density estimators [9] that are designed for
static data. Using a rectangular partitioning, however, has a number of disadvan-
tages. Rectangular approximations are not optimal for arbitrary shapes, especially
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in high dimensions. Indeed, shape approximation via rectangles becomes progres-
sively worse as dimensions grow, which can be illustrated in a well-known ‘spiky
rectangle phenomenon’ [10].

We instead propose to upgrade the Nearest Neighbour Regressor (NNR) [9]
to an active setting. The NNR is a function approximator which is locally con-
stant on the Voronoi tessellation. The space is thus partitioned into Voronoi cells,
which are arbitrary polytopes adaptive to the local geometry of data [11]. Such
a space partitioning and the corresponding locally-constant approximation address
the aforementioned disadvantages of DEFER, which we empirically show in the
present work.

The core idea behind our active querying strategy is to look for points where
the estimated function presents the largest variation. Such points are the most
informative for the update of the approximator. This is done by considering the
Delaunay triangulation [11], which is dual to the Voronoi tessellation. The trian-
gulation allows to discretize the graph of the function and to look at its volume,
which captures the function variation. Working with the graph of the function al-
lows to balance between the exploration and exploitation strategies. This leads to
a geometry-aware procedure deemed Active Nearest Neighbour Regressor (ANNR).
Voronoi tessellations and their dual Delaunay triangulations enable to solve both
the aforementioned problems of interpolation and querying within a single geomet-
ric framework.

To make the computation of the Delaunay triangulation feasible in high di-
mensions, we build upon on the approximate stochastic method described in [12].
Additionally, we prove via geometric arguments that the volumes of the Delau-
nay simplices over the graph of f get arbitrary small as the procedure progresses,
obtaining halting guarantees for the ANNR. Our implementation of the ANNR is
available at https://github.com/vlpolyansky/annr.

Our main contributions can be summarized as follows:

• A novel active querying procedure deemed ANNR exploiting the geometry of
the graph of f through the Delaunay triangulation;

• An efficient high-dimensional implementation and a theoretical proof of halt-
ing for the ANNR;

• An empirical investigation of the ANNR through a series of experiments
demonstrating improved performance and robustness over the recently in-
troduced active function approximator DEFER.

https://github.com/vlpolyansky/annr
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A.2 Related Work

Delaunay Triangulations. The Delaunay triangulations were originally intro-
duced in [13] as natural triangulations of point-clouds in arbitrary dimension. Be-
cause of their remarkable geometrical properties, they have seen extensive ap-
plications within computer graphics [14, 15] and topological data analysis [16].
The ANNR is in particular related to Delaunay-based techniques for mesh refine-
ment [17], whose goal is to refine the Delaunay triangulation (mesh) of a coarse
point-cloud by progressively adding novel points. Ruppert’s algorithm [18] and
Chew’s second algorithm [19] are the most popular to this end. The idea un-
derlying both algorithms is to insert the circumcenters of poor quality Delaunay
triangles. Although our method follows a similar pattern, we are concerned with
the task of function approximation rather than mesh refinement. We thus consider
the known values of the ground-truth function and query points in order to refine
the approximation, rather than aiming to optimally fill the ambient space. More-
over, mesh refinement algorithms and applications to computer graphics in general
are concerned with a two- or three-dimensional ambient space. In contrast, we
provide a general framework and an efficient implementation of the ANNR in high
dimensions.

Deep Active Learning. Active querying strategies have been extensively studied
in the context of deep learning. However, the vast majority of methods assume a
predefined finite pool from which points can be queried (‘pool-based active learn-
ing’) or that datapoints can be sampled from the ground-truth distribution and
then rejected for querying (‘stream-based active learning’) [20–22]. These methods
typically deploy an ’acquisition function’ representing some form of uncertainty
that the desired query has to maximize [23–25]. Picking an arbitrary point in the
ambient space –sometimes referred to as ’membership query synthesis’– is rarely
considered in the literature and the corresponding subfield of active learning is rela-
tively undeveloped. The reason is twofold: first, maximizing an acquisition function
in the continuum for black-box models such as deep neural networks would require
an additional expensive optimization procedure (gradient descent, for example) at
each querying step. In contrast, simple but interpretable function approximators
such as the piecewise linear ones considered in this work and in DEFER [8] allow to
design querying strategies without the need of an acquisition function. Second, an
arbitrary datapoint in the ambient space is likely to result in noise and thus to be
uninformative to query, if even possible [26]. Due to recent advances in generative
modeling, this can be nowadays amended by looking for points to query in the
latent space of a generative model [27].

Active Sampling in Bayesian Inference. Acquisition functions based on un-
certainty naturally occur in Bayesian inference, which is often used to approximate
unknown distributions [5]. Classical Bayesian methods have a number of disadvan-
tages, such as assuming a certain form of a distribution, requiring computable gra-



A.3. METHOD A5

dients, and intractability. Recent developments in approximate Bayesian computa-
tion and Monte Carlo sampling methods address some of these issues [28–30], albeit
suffering from impractical computational complexity [31]. When compared to DE-
FER, state-of-the-art Bayesian sampling methods showed comparable or worse per-
formance, in particular, on multi-modal, sparse and discontinuous distributions [8].
In addition, these methods can only be applied to a particular class of likelihood
functions, and are typically designed to perform sampling from the estimated dis-
tributions rather than to estimate a (likelihood) function value at an arbitrary
point.

A.3 Method

Pt σ Pt+1

Figure A.2: A graphical depiction of the ANNR querying procedure. Left: the NNR
(in blue-scale) of a two-dimensional dataset. Center: the corresponding Delaunay trian-
gulation. The simplices are colored by the volume of their liftings, with the largest one
highlighted in orange together with its circumcenter. Right: the updated NNR after the
orange point has been added to the dataset.

Let f : X → R be a function defined on a connected metric space (X , d), where
d : X ×X → R≥0 denotes the distance. Given a finite set of points P ⊆ X (referred
to as datapoints) on which the values of f are known, a natural way to extend f
beyond P is to regress to the values at the nearest datapoint [9].

Definition A.3.1. Let x be a point such that all the distances d(x, p), p ∈ P are
distinct. The value of the Nearest Neighbor Regressor (NNR) f̃ at x coincides with
the value of f at the closest datapoint i.e.,

f̃(x) = f(p), p = argmin
p∈P

d(x, p). (A.1)

Recall that the Voronoi cell C(p) of p ∈ P contains the points in X that are
closer to p than to any other datapoint i.e.,

C(p) = {x ∈ X | ∀q ∈ P d(x, q) ≥ d(x, p)}. (A.2)
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The Voronoi cells are closed, cover the ambient space X and intersect at their
boundary. When X = Rm, they are arbitrary m-dimensional convex polytopes [11].
From the point of view of the Voronoi tessellation, the NNR is defined on the interior
of Voronoi cells and is constant locally therein.

A.3.1 Active Nearest Neighbor Regression
In this work we upgrade the NNR to an active setting. A general active proce-
dure consists in updating a dataset inductively by querying for the value of f at a
new datapoint based on the current dataset, on which f is assumed to be known.
Starting from an initial dataset P0, this produces a sequence {Pt}t∈N obtained by
adding a datapoint at each step: Pt+1 = Pt ∪ {pt}. We are now going to describe
our proposed querying strategy.

To update the dataset, we first consider the triangulation which is dual to the
Voronoi tessellation. From now on, we focus on the m-dimensional Euclidean space
X = Rm. In the following we denote by ⟨·⟩ the convex hull of a set.

Definition A.3.2. The Delaunay triangulation DelP generated by P is the sim-
plicial complex with vertices in P that contains a k-dimensional simplex σ =
⟨v0, · · · , vk⟩, vi ∈ P , if and only if ⋂

0≤i≤k

C(vi) ̸= ∅. (A.3)

If P is in general position then the simplices in DelP are non-degenerate. In
that case, a remarkable property of the Delaunay triangulation is that no point in
P lies inside the circumsphere of an m-dimensional simplex σ ∈ DelP [11].

Our querying strategy intuitively relies on the variation of f over them-dimensional
simplices of the Delaunay triangulation. Concretely, we compute the volume of the
’lifting’ of such simplices to the graph Γλf = {(x, λf(x)) | x ∈ X } of λf , where
λ ∈ R≥0 is a hyperparameter.

Definition A.3.3. The lifting via λf of anm-dimensional simplex σ = ⟨v0, · · · , vm⟩
in Rm is the simplex in Rm+1

σ̂ = ⟨(v0, λf(v0)), · · · , (vm, λf(vm))⟩. (A.4)

Our algorithm looks for the m-dimensional simplex σ ∈ DelP that maximizes
Vol(σ̂). To this end, the k-dimensional volume of a simplex σ = ⟨v0, · · · , vk⟩ can be
efficiently computed even for high dimensions via the Cayley-Menger determinant
[32]:

Vol(σ) =

√
(−1)k+1

2k(k!)2 detM. (A.5)
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Here, M is the (k + 2) × (k + 2) matrix obtained by padding by a top row and a
left column equal to (0, 1, · · · , 1) the matrix of mutual distances d(vi, vj)2.

The role of the hyperparameter λ is to ’sharpen’ the lifted simplices. Since λ
controls the increment of λf , Vol(σ̂) depends monotonically on λ. As Vol(σ) is
constant, λ ≫ 0 encourages simplices with high variation even if the base simplex
σ is small. On the other hand, Vol(σ) ∼ Vol(σ̂) for λ ∼ 0, in which case the ANNR
regularly explores the domain by looking for the largest simplices, disregarding f
and its variation completely. In summary, λ can be interpreted as governing a
trade-off between exploitation of the estimated variation and domain exploration
– a classical compromise in active learning [33]. We make the latter statement
formal in Section A.4.1 and refer to Section A.5.1 for a further discussion around
the practical choice of λ.

Given the simplex σ that maximizes Vol(σ̂), the point we query is the dual of
σ in the Voronoi tessellation. In other words, the novel query is the value of f at
the intersection between the m + 1 Voronoi cells of the vertices of σ. It is thus a
point where the NNR (Equation A.1) is maximally discontinuous, which motivates
the need to gain information on f around it. Geometrically, it coincides with the
circumcenter of σ (i.e., the point in Rm equidistant from the vertices of σ) and we
consequently denote it by Circ(σ). Our querying strategy is graphical depicted in
Figure A.2 and can be formally summarized as follows:

pt+1 = Circ(σ), σ = argmax
σ∈DelPt

Vol(σ̂). (A.6)

We stop the iteration when the maximum volume of a lifting reaches a given
threshold ε > 0. If care is taken in order to constrain the dataset in a compact
region (which is discussed in Section A.3.2), the algorithm is guaranteed to halt with
mild assumptions on f (see Section A.4.2). The overall procedure is summarized
in the pseudocode Algorithm A.1.

A.3.2 Bounding the Query
The circumcenter of a simplex can possibly lie outside of the simplex itself. When
a m-simplex is close to being degenerate (i.e., contained in a (m − 1)-dimensional
affine subspace), the circumcenter tends to escape in an infinite direction. It is thus
necessary to limit the expansion of the dataset within a compact region.

We propose to fix a convex compact set A ⊆ Rm containing the initialization P0
and to constrain Pt to be contained in A in the following way. Suppose that σ is the
simplex in DelPt

whose lifting has the largest volume and that Circ(σ) ̸∈ A. Instead
of setting pt+1 = Circ(σ) we set pt+1 as the intersection between the boundary ∂A
of A and the segment connecting the barycenter of σ (which is contained in σ)
and Circ(σ). Such segment is known as ’Euler line’ of σ [34] and the intersection
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Algorithm A.1 Active Nearest Neighbor Regression (ANNR)
Initialize P
maxV ol = ε
while maxV ol ≥ ε do

Compute the Delaunay triangulation DelP
maxV ol = 0
for σ ∈ DelP of dimension m do

Compute the volume Vol(σ̂) via Equation A.5
if Vol(σ̂) > maxV ol then
maxV ol = Vol(σ̂)
maxSimplex = σ̂

end if
end for
Add the circumcenter of maxSimplex to P

end while

∂A

pt+1

Circ(σ)

Figure A.3: Depiction of the query in the case the circumcenter falls outside of the
bounding region A.

between it and ∂A is unique due to the convexity of A. The intuition behind this
choice for pt+1 is that it is the furthest point in A from (the barycenter of) σ in the
direction of the circumcenter of the latter. Moreover, the theoretical halting guar-
antees discussed in Section A.4.2 crucially rely on the procedure described here. A
graphical depiction is provided in Figure A.3.

The bounding set A additionally enables to initialize the dataset P0 by uniformly
sampling from A. Since the Delaunay triangulation covers the convex hull of its
vertices, one can additionally enlarge P0 so that ⟨P0⟩ = A and thus ⟨P0⟩ = A for
every t. This is always possible if A is polytopal. When A is a hypercube (which
is the case in all of our experiments) this can be done by adding its 2m vertices to



A.3. METHOD A9

P0. We stick to this form of initialization when implementing Algorithm A.1.

A.3.3 Computing the Delaunay Triangulation

Figure A.4: A depiction of a random walk along the boundary of the Voronoi cells
(orange) together with the Delaunay simplices found along the way.

A naive implementation of ANNR involving standard exact methods of con-
structing a Delaunay triangulation would present a significant computational chal-
lenge. Namely, the Delaunay triangulation is prohibitively expensive to compute
in high dimensions as the number of simplices grows exponentially with respect to
the dimension m in a general scenario [35].

We propose to approximately infer DelP via an adaptation of the stochastic ray-
casting technique first considered in [36] and later expanded in [12]. The central
idea lies in performing a random walk along the boundary of the Voronoi cells in
order to look for their vertices, which in turn correspond by duality to the desired
Delaunay simplices. More precisely, a Markov Chain (MC) is constructed in the
following way. First, a starting datapoint x0 is picked uniformly from P . Then
a random direction θ0 ∈ Sm−1 is chosen and the intersection x1 between the ray
{x0+tθ0}t∈R≥0 cast from x0 and a (m−1)-dimensional face of the polytopal Voronoi
cell C(x0) is found by an explicit analytic expression. The procedure is repeated
by additionally constraining the subsequent ray to lie on the aforementioned face,
obtaining a point x2 on a (m − 2)-dimensional face of C(x0), and so on. After m
rounds of iteration, a vertex xm of the Voronoi cell (i.e., a 0-dimensional face) is
obtained. By keeping track of the other Voronoi cells to which the encountered
faces belong to, the (vertices of the) Delaunay simplex corresponding to xm are
automatically available. After that, the random walk continues on the 1-skeleton
of the Voronoi tessellation in an analogous manner, possibly departing from C(x0)
and finding other Delaunay simplices. The result is a subset of the Delaunay tri-
angulation which approximates the whole DelP . By deploying a nearest-neighbor
lookup structure such as a k-d tree [37], every ray intersection described above
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can be performed with a complexity that depends logarithmically on the number
of datapoints. We refer to [12] for further details. A graphical depiction of the
described procedure is presented in Figure A.4.

The vertices of the Voronoi cells corresponding to the found Delaunay simplices
(i.e., the circumcenters of the latter) are obtained as a byproduct, thus there is
no need for a further computation of the point to query. Because of the iterative
nature of the search for Delaunay simplices, we integrate the latter with the main
loop in Algorithm A.1 for a further computational improvement. We further heuris-
tically adjust the initialization of the random walks by picking datapoints close to
barycenters of the simplices with the highest lifted volume at the previous step. As
suggested in [12], this can be accomplished via a ’visibility walk’ [38] in the new
1-skeleton towards such barycenters before initiating the random walk.

A.3.4 Complexity Analysis
In this section we provide a comparison of the computational complexity of the
ANNR and DEFER for both data querying and evaluation of the approximated
function.

Since each random walk has logarithmic complexity (Section A.3.3), querying a
new datapoint has complexity O (L log |P |) for the ANNR, where L is the number
of MC steps performed. The latter is a hyperparameter typical for MC methods
and its effect can be mitigated by running multiple walks in parallel. For DEFER,
querying has complexity O (log |P |). The difference in complexity due to L indeed
reflects the price of approximating the Delaunay triangulation, as opposed to the
exact geometry of rectangular partitions in DEFER. Additionally, the ANNR com-
putes volumes of simplices, which has complexity O(m3) w.r.t. the dimension m
due to the Cayley-Menger determinant (Equation A.5), in contrast to linear com-
plexity for volumes of rectangles in DEFER. Overall, querying complexity of the
ANNR is O(L(m3 + log |P |)).

Evaluating the approximated function has identical complexity O(log |P |) with
respect to the current dataset size |P | in both methods. This is due to data struc-
tures such as k-d trees underlying both the nearest neighbor lookup for Voronoi
cells in the ANNR and the rectangle lookup in DEFER.

A.4 Theoretical Results

A.4.1 Geometric Interpretation
In this section we present a geometric interpretation of the ANNR based on an
inequality for volumes of graphs of functions. To this end, suppose that Ω ⊆ Rm

is an m-dimensional connected and compact submanifold (with boundary). For a
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smooth function f : Ω → R denote by Γf its graph, which is an m-dimensional
manifold. Additionally, denote by fΩ = 1

Vol(Ω)
∫

Ω f the average of f over Ω and by
gf the matrix ∇f ⊗ ∇f i.e., (gf )i,j = ∂xif ∂xjf .

Proposition A.4.1. There exists a constant C > 0 such that for every smooth
function f : Ω → R the following inequality holds:

log Vol(Γf ) ≥ C∥f − fΩ∥2
2 + log Vol(Ω) + o(∥gf ∥2). (A.7)

We refer to the Appendix for a proof. If Ω is a Voronoi cell then the NNR takes
the value of f at the only datapoint contained in the cell, which is a one-sample
Monte Carlo estimate of fΩ. In other words, fΩ ∼ f̃ on Ω. In light of Proposi-
tion A.4.1, the (logarithm of the) volume of the graph of f is approximately bound-
ing the error between f and its NNR estimation plus a term log Vol(Ω) penalizing
domains with large volume. The latter can be thought as a form of regularization.
The ANNR exploits this as it computes and approximation to the volume of the
graph of (a multiple of) f . Such volume is not directly approximable when Ω is a
Voronoi cell because of lack of data in Ω. We thus compute it over the discretiza-
tion of the manifold Γf given by the lifted Delaunay triangulation {σ̂}σ∈DelP

. In
other words, the volume is computed for the simplices formed by the datapoints in
neighboring intersecting cells.

Note that if we replace f by λf for some λ ∈ R≥0 then the right hand-side of
Equation A.7 becomes Cλ2∥f − fΩ∥2

2 + log Vol(Ω) + λ4o(∥gf ∥2). A natural inter-
pretation is that λ controls the balance between error minimization (corresponding
to the term ∥f − fΩ∥2

2) and exploration of the domain (corresponding to the regu-
larization term log Vol(Ω)). This motivates the insertion of the hyperparameter λ
in the ANNR (see Equation A.4).

A.4.2 Halting Guarantees
In this section we establish formal halting guarantees for the ANNR given a conti-
nuity assumption on the ground-truth function f . Since our algorithm stops when
a fixed threshold ε is met, halting can be equivalently reformulated as the vanish-
ing of the corresponding lower limit. The halting guarantee is then given by the
following.

Proposition A.4.2. Assume that the ground-truth function f is Lipschitz and let
st = maxσ∈DelPt

Vol(σ̂). Then Algorithm A.1 always halts for any ε or, in other
words, limt→∞st = 0.

We refer to the Appendix for a proof. Although the Lipschitz assumption is
necessary for the theoretical proof, we empirically show in the experimental section
that the ANNR is well-behaved even for highly discontinuous functions such as char-
acteristic functions of geometrically articulated domains (see Section A.5.2). The
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proof of Proposition A.4.2 remains valid when st and the corresponding maximum
is computed w.r.t. a partial Delaunay triangulation coming from the approximation
discussed in Section A.3.3. That is, the ANNR is guaranteed to halt even with the
approximation procedure.

A.5 Experiments

We select DEFER as our primary baseline as it is the state-of-the-art method for
active function approximation which is suitable for arbitrary functions [8]. As an
ablation, we additionally compare with the non-active version of the NNR which
samples datapoints uniformly from A, denoted by nANNR.

In all the experiments, the number of queries is referred to as N . For numerical
validation, we rely on the standard score Mean Average Error

MAE = 1
|Ptest|

∑
p∈Ptest

∣∣∣f̃(p) − f(p)
∣∣∣, (A.8)

where Ptest is a test set. We generate Ptest as an equally-spaced grid in m = 2
dimensions and by uniformly sampling from A when m > 2 since exhaustive grid
sampling is computationally infeasible.

A.5.1 Hyperparameter λ
As discussed in Section A.3.1 and A.4.1, the ANNR has a single hyperparameter
– the lifting coefficient λ – which governs a natural exploration-exploitation trade-
off. This is graphically demonstrated in Figure A.5, where a higher λ encourages
querying in areas where f varies the most. In practice, we suggest the following
heuristic choice for λ, which we implement in our experiments. We select λ pro-
portional to the size of the domain and inversely proportional to the scale of the
function, effectively bringing domain and codomain to the same scale to balance
exploration and exploitation of the function: λ = Vol(A)

max f−min f . Here, max and min
can be estimated from prior knowledge or, more concretely, directly evaluated from
the initial dataset P0.

A.5.2 Geometric Advantages of the ANNR
In this experiment, we consider characteristic functions with various supports and
demonstrate that the ANNR is well suited for approximating the support shape.
The ANNR leverages the variable geometry of Voronoi cells, which results in a fine-
grained approximation with a small number of queries. In contrast, DEFER relies
on a rectangular partitioning of the space, which, as we show, can result in sub-
optimal approximations. This feature also allows ANNR to approximate functions
with arbitrary compact domains, in particular those with a small volume compared
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λ = 0.1 λ = 1 λ = 10

Figure A.5: ANNR approximation of a normalized Gaussian with σ2 = 0.1 for various
values of λ (N = 500).

to A (see the Appendix for an example).

DEFER ANNR

Figure A.6: Approximation of a spiral characteristic function (see the Appendix for
details). N = 200 (top), N = 400 (bottom).

We first consider the characteristic function of a spiral (Figure A.6). The ANNR
displays a visibly better approximation and has a connected support already after
N = 400 queries. The support of DEFER is instead highly disconnected as it is
unable to capture regions where the spiral is misaligned with the Cartesian axes
due to its rectangular bias (see the Appendix for details).
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Rotational Equivariance. DEFER is sensitive to rotations of the domain due
to its inherent bias towards Cartesian axes. In contrast, the ANNR allows to
approximate shapes without any orientation bias since Voronoi cells are arbitrary
polytopes. Figure A.7 demonstrates improved stability of the ANNR approximation
with respect to rotations of R2 compared to DEFER (see the Appendix for details).

DEFER ANNR

Figure A.7: Approximation of an ellipse characteristic function 1x2+4y2≤1 with 0◦ (top)
and 30◦ (bottom) rotations of the domain (N = 300).

Curse of Dimensionality. The bias of DEFER towards rectangular geometry
can potentially affect the quality of approximation in high-dimensions due to the
increasing spikiness of rectangles [10,39]. To demonstrate this, we consider a char-
acteristic function 1∥x∥≤1 of a unit ball in R6 (with A = [−2, 2]6). Figure A.8
reports the score (Figure A.8a) and query point distribution (Figure A.8b) with
respect to the norm of test and query points respectively.

Figure A.8a shows that the MAE scores decrease when the test points are sam-
pled away from the discontinuity of f i.e., the boundary of the ball. ANNR’s score
is significantly lower inside the ball (∥p∥ < 1, p ∈ Ptest). At the same time, Fig-
ure A.8b shows that all the queries of the ANNR are queried in the proximity of the
boundary, while DEFER’s query norm distribution is shifted towards the uniform
one (nANNR).
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(a) MAE scores for test sets at different
norms.

(b) Norm distribution of the queried
points.

Figure A.8: Analysis of the 6-dimensional unit ball approximations based on the norm
of data (N = 105 and |Ptest| = 107 per norm).

A.5.3 Performance Comparison
In this section we compare the performance of the ANNR with DEFER and the
non-active sampler nANNR for articulated functions including parameter estima-
tion of gravitational waves and exploration of the latent space of a deep generative
model. The scores are presented in Table A.1. For the ANNR and the nANNR,
we report averages and standard deviations over 10 runs with different random
initializations (in contrast, DEFER has no stochasticity). We set N = 1000 for
the two-dimensional experiment (latent manifold exploration) and N = 105 when
m > 2. Our method outperforms the baseline in terms of MAE by a significant
margin.

Table A.1: Performance Comparison (MAE).

ANNR DEFER nANNR

Gravitational waves
parameter estimation

0.4710
±0.0232

0.5309 0.5317
±0.2175

Latent space
volume density

47.0509
±0.4975

50.5073 54.6290
±0.8010

Gravitational Waves. A large area of application for active function approxi-
mation is astrophysics and, in particular, gravitational wave parameter inference
problems [1, 40]. Observation of gravitational waves are rare, and the magnitude
of the effect is low, implying scarcity of collected data. With limited observations
and dozens of parameters describing the gravitational event, the problem of param-
eter estimation is commonly solved by Bayesian inference methods approximating
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Figure A.9: Marginal distributions for gravitational waves over selected two-dimensional
slices. Each slice is identified by a pair of parameters named as in [8].

a simulated log-likelihood function on the parameters [1, 2].

We use the same 6-dimensional formulation of parameter inference as described
in [8], and refer the reader to the Appendix for a detailed description of parame-
ters. In addition to the original setup, we rescale the function domain to a unit
hypercube A = [0, 1]6 for convenience and multiply f by a factor of e8000 for better
numerical stability. Lastly, in order to deal with practical unboundedness of the
density function, we perform an adaptive clipping of extensively sharp volumes.
The details of the clipping are available in the Appendix.

Apart from the MAE comparison in Table A.1, we present a visualization of
the function approximations in Figure A.9 of a single run. The figure displays
histograms over marginal distributions over a set of two-dimensional slices of the
domain. Each marginalization was performed via Monte-Carlo sampling with 105

samples per bin. The figure shows the visual closeness of ANNR marginalizations
to the original distribution compared to the baseline. Marginals over all 15 pairs
of parameters are available in the Appendix.

Latent Manifold Exploration. Our last experiment addresses a manifold explo-
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ration task on the latent space of a deep generative model. The generative process
enables to query an arbitrary point in the latent space and thus suits the framework
of the ANNR and DEFER. Moreover, decoding the queried points allows to inter-
pret and semantically evaluate the exploration procedure. To this end, we deploy
a generative model φ : Z → X that maps a prior distribution on the latent space
Z = Rm to the data distribution on X = Rn and regard it as (the probabilistic
analogue of) a parametrization of the data manifold. The ‘mass’ distribution of
data on Z is represented by the induced volume density f i.e., the density of the
volume form of the Riemannian metric induced by φ on Z via pull-back [41, 42].
Such volume density is concretely expressed as f(z) =

√
det (Jφ(z)TJφ(z)) where

Jφ(z) is the Jacobian matrix of φ at z ∈ Z. Intuitively, f can be seen as a ’fuzzy’
characteristic function of the latent manifold and an active function approximator
for f can be interpreted as progressively exploring such manifold.

We train φ as (the decoder of) a Variational Autoencoder (VAE, [43]) on the
MNIST dataset [44] of gray-scale images of hand-written digits (n = 784). We
deploy a two-dimensional latent space (m = 2) with a standard Gaussian prior.
Despite its low dimensionality, such a latent space is sufficient for generation of qual-
ity MNIST images [43] and enables direct visualization. For better parametrization
quality, the latent prior is additionally encouraged by a hyperparameter β = 2
multiplying the corresponding ELBO loss term [45].

Figure A.10 displays the progressive approximation of f as well as images de-
coded from queried points. As can be seen from the latter, around t = 500 the class
of pt (digit) is different at each step t and the ANNR is thus covering a wide se-
mantic range of data. In contrast, around t = 1000 the decoded images are similar,
indicating a phase close to convergence in which the approximation is refined locally.

Runtime Comparison. The overall flexibility of the geometric framework utilized
by the ANNR comes with a certain computational cost, which highlights a tradeoff
between effectiveness and efficiency of the methods. The computational cost of the
ANNR is largely mitigated by the Delaunay approximation the method relies on.
In addition, the runtime of the ANNR can be heavily controlled by adjusting the
desired Markov Chain sampling precision and increasing the number of available
parallel threads.

We provide a runtime comparison between the methods on experiments dis-
cussed earlier in this section in Table A.2. Each number represents the average
runtime for a single experimental run. All experiments are performed on CPU
Ryzen 9 5950X 16-Core. We note that in case of the ANNR single queries still take
milliseconds to compute, which is reasonable for real-life applications with high
function evaluation cost.
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N = 100 N = 500

N = 1000 Ground Truth

490 < t ≤ 500

990 < t ≤ 1000

Figure A.10: Top: approximation of the latent space volume density of a deep generative
model. Bottom: images decoded from the queried latent points pt for two intervals of t.

A.6 Conclusion and Future Work

In this work we introduced the ANNR – an adaptation of nearest neighbor regres-
sion to an active setting. We provided a computationally efficient implementation
of the ANNR as well as theoretical halting guarantees. Our empirical investiga-
tions have shown that the ANNR outperforms the state-of-the-art active function
approximator called DEFER.

An interesting line for future investigation lies in designing active querying
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Table A.2: Runtime Comparison.

ANNR DEFER

Gravitational waves
parameter estimation

1347 s 186 s

Latent space
volume density

220 ms 90 ms

strategies for other higher-dimensional function approximators from the existing
literature. Examples include the piecewise linear Delaunay interpolator [46] or the
tensor product of cubic splines [47].
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A.8 Appendix

A.8.1 Proofs of Theoretical Results
In this section we provide proofs for the theoretical results presented in the main
body of the paper. We start by proving the result from Section A.4.1.

Proposition A.8.1. There exists a constant C > 0 such that for every smooth
function f : Ω → R the following inequality holds:

log Vol(Γf ) ≥ C∥f − fΩ∥2
2 + log Vol(Ω) + o(∥gf ∥2). (A.9)

Proof. The volume of Γf can be expressed as

Vol(Γf ) =
∫

Ω

√
det(1 + gf ) (A.10)

and thus by Jensen inequality we get:

log Vol(Γf )
Vol(Ω) ≥ 1

2Vol(Ω)

∫
Ω

log det(1 + gf ). (A.11)

Since by general properties of matrices log det(gf ) = tr(log gf ) and log(1 + gf ) =
gf + o(∥gf ∥2) where ∥ · ∥ denotes the standard matrix norm, the right hand side of
Equation A.11 reduces to
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C1

∫
Ω

tr(gf ) + o(∥gf ∥2) = C1∥∇f ∥2
2 + o(∥gf ∥2). (A.12)

Finally, by the Poinaré-Wirtinger inequality [48] ∥∇f ∥2
2 ≥ C2∥f − fΩ∥2

2 for some
constant C2 > 0, which concludes the proof.

We now prove the halting guarantee from Section A.4.2. First, we provide the
following result concerning high-dimensional Euclidean geometry which will be nec-
essary for the main proof. Recall that A ⊆ Rm is a convex compact set.

Lemma A.8.2. For each δ > 0 there exists an η > 0 such that for each n-
dimensional simplex σ ⊆ A if Vol(σ) > δ then d(v, x) > η for each vertex v of
σ and each point x of the segment connecting the baricenter and the circumcenter
of σ.

Proof. By comparing the volume of a simplex with the volume of its circumsphere,
there exists η1 > 0 such that for any simplex σ if Vol(σ) > δ then Rσ > η1, where
Rσ denotes the radius of the circumsphere of σ. There also exists a η2 > 0 such
that for any simplex σ if Vol(σ) > δ then all the heights (i.e., the segments passing
through the vertices and orthogonal to the opposite faces) of σ are greater than
η2. To see this, note that otherwise there would exist triangles of arbitrarily small
heights and thus, by the volume constraint, with faces of arbitrarily large volume,
contradicting the compactness of A. Now, given a simplex σ and a vertex v of σ,
the segment connecting v to its opposite face and containing the barycenter b of σ
is shorter than the height passing through v because of orthogonality of the latter.
The barycenter separates that segment into a portion of m−1

m of it containing v.
Thus, we have d(v, b) > m−1

m η2.

Consider η3 = min{η1,
m−1

m η2}. For any simplex σ with circumenter c and
barycenter b we then have d(v, b) > η3 and d(v, c) > η3 for every vertex v of σ.
Since (b−v) ·(c−v) > 0, we have that d(v, x) >

√
2

2 η3 = η for each x in the segment
connecting b and c, as desired.

We now prove the main result from Section A.4.2.

Proposition A.8.3. Assume that the ground-truth function f is Lipschitz and let
st = maxσ∈DelPt

Vol(σ̂). Then Algorithm A.1 always halts for any ε or, in other
words, limt→∞st = 0.

Proof. Suppose by contradiction that there exists ε > 0 such that st > ε for all
sufficiently large t. Since f (and thus λf) is Lipschitz, there exists δ > 0 such that
for any simplex σ if Vol(σ̂) > ε then Vol(σ) > δ.
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Let us prove that there can not be infinite queries in the interior of the bound-
ing region A. By comparing the volume of a simplex with the volume of its cir-
cumsphere, there exists γ > 0 such that for any simplex σ if Vol(σ) > δ then
Rσ > γ, where Rσ denotes the radius of the circumsphere of σ. When a point
pt+1 = Circ(σ) is queried, since by hypothesis st = Vol(σ̂) > ε we have Rσ > γ.
But then d(pt+1, q) > γ for all q ∈ Pt since no points in Pt are contained inside the
circumsphere of the Delaunay simplex σ. If infinite points in the interior of A are
queried, one gets an infinite sequence in A whose pairwise distances are all greater
than γ. This is impossible since A is compact.

As a consequence, the queried points pt+1 belong to the boundary of A for t ≫ 0
and are obtained via the method described in Section A.3.2. By Lemma A.8.2 there
exists η > 0 such that d(v, pt+1) > η for t ≫ 0 where v is any vertex of the simplex
σ whose lifting has the largest volume at step t. Since σ is a Delaunay simplex it
holds that d(q, pt+1) > η for every q ∈ Pt and t ≫ 0, which again contradicts the
compactness of A.

A.8.2 Extended Experiments

Spiral

Figure A.11: Ground-truth plot of a spiral characteristic function and performance
comparison between the ANNR and DEFER as the number of queries increases. Scores
are averaged over 5 runs.

Arbitrary Domain

In many cases the actual domain of a function is not the entire Rm, but rather
some compact subspace. In many optimization algorithms, the function domain
is artificially extended to a bounding volume (usually a bounding box) containing
it, assuming some zero value outside of the original function domain. In higher
dimensions, this significantly increases the volume to explore [10]. The ANNR
takes advantage of the flexibility of Delaunay partitioning to restrict new queries to
the (boundary of the) function domain. Figure A.12 illustrates an approximation of
f(x) = ∥x∥ restricted to the intersection of two circles (the volume of the domain is
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only ∼ 1/30 of the bounding box volume), which otherwise can be very inefficiently
approximated by its bounding box.

Figure A.12: Approximation of a distance function defined on an intersection of two
circles with radius 5 and centered at (-3, -3) and (4, 4).

Rotational Equivariance

0◦ 10◦ 20◦ 30◦ 40◦
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Figure A.13: Top: approximation of an ellipse characteristic function 1x2+4y2≤1 by
DEFER and the ANNR with various rotations of the domain (N = 300). Bottom:
performance comparison as the angle varies.
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Gravitational Waves

Data preprocessing. We follow the initial setup of the problem described in [8].
Namely, the function is constructed from a gravitational wave example provided tu-
torial. The six parameters of a gravitational wave generated by a binary black hole
that are inferred by the model are: the luminosity distance dL, the inclination angle
ι, the polarization angle ψ, the phase ϕc relative to a reference time and two spin
magnitudes a1 and a2. For more details about the nature of the data we refer to [1].

Evaluation of the logarithm of the approximated likelihood on several uniformly
selected points in the domain yields values distributed around −8000 (the simula-
tor provides log-likelihood). Since our aim is to approximate the original likelihood
function, we add 8000 to all log-density evaluations and then exponentiate the val-
ues, effectively multiplying the likelihood function by e8000. This operation brings
the majority of output values of the underlying function close to single digits, sta-
bilizing the computations. Such scaling does not affect the baseline as DEFER
is invariant to such transformations, and multiplicatively affects our choice of the
lifting parameter.

Volume clipping. While the approximated density function may appear to take
relatively low values over the large part of the domain, some of the concentrated
areas may produce values many orders of magnitude higher than that. Without any
Lipschitz guarantees for the underlying function, such areas could create attractors
for the ANNR, forcing the method’s exploration to ’sink’ in such singularities and
over-exploit the area. In order to mitigate that, we propose to truncate the scores
of simplices in accordance to a pre-selected sensible Lipschitz constant.

Consider a simplex σ ∈ DelP and its lifting σ̂ and note that Vol(σ̂) = 1
cos α Vol(σ),

where α is the dihedral angle between σ and σ̂ both naturally embedded in Rm+1.
Limiting the Lipschitz constant is equivalent to limiting the maximal dihedral angle
to some α0. As the result of the clipping, Vol(σ̂) in Algorithm A.1 gets transformed
into min{Vol(σ̂), 1

cos α0
Vol(σ)}. In our experiments with gravitational waves, we use

α0 = 89◦.

Marginals. FigureA.14 presents the marginalizations of the approximated func-
tion over all possible two-parameter slices.

https://git.ligo.org/lscsoft/bilby/-/blob/c14012d6fe4f893d8b086d543ffd353dcef490b7/examples/gw_examples/injection_examples/fast_tutorial.py
https://git.ligo.org/lscsoft/bilby/-/blob/c14012d6fe4f893d8b086d543ffd353dcef490b7/examples/gw_examples/injection_examples/fast_tutorial.py
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High-Dimensional Data:

Computation, Compactification
and Convergence
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Abstract

The Voronoi Density Estimator (VDE) is an established density estima-
tion technique that adapts to the local geometry of data. However, its appli-
cability has been so far limited to problems in two and three dimensions. This
is because Voronoi cells rapidly increase in complexity as dimensions grow,
making the necessary explicit computations infeasible. We define a variant of
the VDE deemed Compactified Voronoi Density Estimator (CVDE), suitable
for higher dimensions. We propose computationally efficient algorithms for
numerical approximation of the CVDE and formally prove convergence of the
estimated density to the original one. We implement and empirically validate
the CVDE through a comparison with the Kernel Density Estimator (KDE).
Our results indicate that the CVDE and the KDE are comparable at their
best performance and that the CVDE surpasses the KDE under arbitrary
bandwidth selection.

B.1 Introduction

Given a discrete set of data sampled from an unknown probability distribution, the
aim of density estimation is to recover the underlying Probability Density Function

B1
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Figure B.1: Graph of a density estimated by the CVDE, with the Voronoi tessellation
underneath.

(PDF) [1,2]. Non-parametric methods achieve this by directly computing the PDF
through a closed formula, avoiding the potentially expensive need of searching for
optimal parameters.

One of the most common non-parametric density estimation techniques is the
Kernel Density Estimator (KDE; [3]). The resulting PDF is a convolution between
a fixed kernel and the discrete distribution of samples. In case of the Gaussian
kernel, this corresponds to a mixture density with a Gaussian distribution centered
at each sample. Another popular density estimator, more commonly used for visu-
alization purposes is given by histograms [4], which depend on a prior tessellation
of the ambient space (typically, a grid). The estimation is piece-wise constant and
is obtained by the number of samples falling in each cell normalised by its volume.

A common limitation of the aforementioned methods is a bias towards a fixed
local geometry. Namely, estimates through KDE near a sample are governed by the
level sets of the chosen kernel. In the Gaussian case, such level sets are ellipsoids of
high estimated probability. Histograms suffer from an analogous bias towards the
geometry of the cells of the tessellation (i.e., the bins of the histograms), on which
the estimated PDF is constant. The issue of geometrical bias severely manifests
when considering real-world high-dimensional data. Indeed, one cannot expect to
approximate the rich local geometries of complex data with a simple fixed one.
Both the estimators come with hyperparameters controlling the scale of the local
geometries which require tuning. This amounts to the bandwidth for KDE and the
diameter of the cells for histograms.

The Voronoi Density Estimator (VDE) has been suggested to tackle the chal-
lenges discussed above [5]. By considering the Voronoi tessellation generated by
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data [6], the estimated PDF is piece-wise constant on the cells and proportional to
their inverse volume. The Voronoi tessellation adapts local polytopes so that each
datapoint is equally likely to be the closest when sampling from the resulting PDF.
This has enabled successful application of the VDE to geometrically articulated
real-world distributions in lower dimensions [7–9].

The goal of the present work is to enable the VDE for high-dimensional scenar-
ios. Although the VDE constitutes a promising candidate due to its local adaptivity,
the following aspects have to be addressed:

Computation. The Voronoi cells are arbitrary convex polytopes and their volume
is thus challenging to compute explicitly, which yields the necessity for fast approx-
imate computations.

Compactification. Data is often concentrated around low-dimensional subman-
ifolds, which makes most of the ambient space empty and several Voronoi cells
unbounded, i.e. of infinite volume (see Figure B.3). One still needs to produce a
finite estimate on those cells, a process we refer to as ‘compactification’.

We propose solutions to the problems above. First, we present efficient algorith-
mic procedures for volume computation and sampling from the estimated density.
We formulate the cell volumes as integrals over a sphere, which can then be approx-
imated by Monte Carlo methods. Furthermore, we propose a sampling procedure
for the distribution estimated by the VDE. This consists in randomly traversing
the Voronoi cells via a ‘hit-and-run’ Markov chain [10]. The proposed algorithms
are highly parallelizable, allowing efficient computations on the GPU.

In order to compactify the cells, we place a finite measure on each of them
by means of a fixed kernel (typically, a Gaussian one), leading to an altered ver-
sion of the VDE which we refer to as Compactified Voronoi Density Estimator
(CVDE). Figure B.1 shows an example of an estimate by the CVDE on a simple
two-dimensional dataset. All the computational and sampling procedures naturally
extend to the CVDE.

A further contribution of the present work is a theoretical proof of conver-
gence for the CVDE. Assuming the original density has support in the whole
ambient space, we show that the PDF estimated by the CVDE converges (with
respect to an appropriate notion for random measures) to the ground-truth one as
the number of datapoints increases. The convergence holds without any continuity
assumptions on the ground-truth PDF nor on the kernel and does not require the
kernel bandwidth to vanish asymptotically. This is in contrast with the conver-
gence properties of the KDE. Due to the aforementioned local geometric bias of
the KDE, the bandwidth has to decrease at an appropriate rate in order to amend
for the local influence of the kernel and guarantee convergence to the underlying
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distribution [11,12].

Finally, we implement the CVDE in C++ and parallelize computations via the
OpenCL framework. Our code, with a provided Python interface, is publicly avail-
able at https://github.com/vlpolyansky/cvde.

B.2 Compactified Voronoi Density Estimator

This section presents Voronoi cell compactification and Compactified Voronoi Den-
sity Estimator, CVDE. We begin by defining the Voronoi tessellations in a general
setting (see [6] for a comprehensive treatment). Suppose that (X, d) is a connected
metric space and P ⊆ X is a finite collection of distinct points referred to as gen-
erators.

Definition B.2.1. The Voronoi cell1 of p ∈ P is defined as

C(p) = {x ∈ X | ∀q ∈ P d(x, q) ≥ d(x, p)}. (B.1)

The Voronoi cells intersect at the boundary and cover the ambient space X.
The collection {C(p)}p∈P is called Voronoi tessellation generated by P . For a
point x ∈ X not on the boundary of any cell, we write C(x) for the unique cell
containing it. When X = Rn with Euclidean distance, the Voronoi cells are convex
n-dimensional polytopes which are possibly unbounded.

Assume now that X is equipped with a finite Borel measure denoted by Vol.
An additional technical condition is that the boundaries of the Voronoi cells have
vanishing measure.

Definition B.2.2. The Voronoi Density Estimator (VDE) at a point x ∈ X is
defined almost everywhere as

f̃(x) = 1
|P | Vol(C(x)) (B.2)

where | · | denotes cardinality.

The function f̃ defines a locally constant PDF on X and thus a probability
measure f̃ Vol. With respect to this distribution the cells are equally likely, and
the restriction to each cell coincides with the normalization of Vol.

We focus on the case where X = Rn equipped with Euclidean distance. One
major issue for the choice of Vol is that the standard Lebesgue measure does not

1Sometimes referred to as Dirichlet cell.

https://github.com/vlpolyansky/cvde


B.2. COMPACTIFIED VORONOI DENSITY ESTIMATOR B5

VDE with bounding square A CVDE with Gaussian kernel

Figure B.2: Comparison between VDE and CVDE for generators in the plane. A darker
color represents higher estimated density.

satisfy the finiteness requirement. A common solution in the literature is to re-
strict the measure to a fixed bounded region A ⊆ Rn containing P [13,14], which is
equivalent to setting X = A as the ambient space. However, this results in an often
unsuitable solution for high-dimensional data. Under the manifold hypothesis [15],
data are concentrated around a submanifold with high codimension which implies
that most of Rn falls outside the support. Moreover, the cells of the points lying
at the boundary of the convex hull of data, which constitute the majority of cells
for such submanifolds, are unbounded (see Figure B.3). Estimating the density
as uniform, after eventually intersecting with the bounded region A, becomes thus
unreasonable and heavily relies on the a priori choice of A.

Figure B.3: Voronoi tessellation for generators distributed on a submanifold (a
parabola). In this case, all the Voronoi cells are unbounded and the VDE is strongly
biased by the choice of the bounding region A.

We instead take a different route. The idea is to make the measure of each cell
finite (’compactify’) by considering a local distribution with mode at the correspond-
ing generator in P . In general terms, we fix a positive kernel K : Rn × Rn → R≥0
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which is at least integrable in the second variable and define the following:

Definition B.2.3. The Compactified Voronoi Density Estimator (CVDE) at a
point x ∈ Rn is defined almost everywhere as

f(x) = K(p, x)
|P | Volp(C(x)) (B.3)

where Volp(C(x)) =
∫

C(x) K(p, y) dy and p is the generator of C(x) i.e., the gener-
ator p ∈ P closest to x.

In practice, a commonly considered kernel is the Gaussian one

K(p, x) = e− ∥p−x∥2

2h2 (B.4)

where h ∈ R>0 is a hyperparameter referred to as ’bandwidth’. More generally,
with abuse of notation a kernel can be constructed from an arbitrary integrable
map K ∈ L1(Rn):

K(p, x) = K

(
p− x

h

)
. (B.5)

Note that the VDE with a bounding region A corresponds to the particular case
of the CVDE with the characteristic function of A as kernel i.e., K(p, x) = χA(x).
Figure B.2 shows a comparison between the VDE and the Gaussian CVDE on a
simple two-dimensional dataset.

It is worth to briefly compare the CVDE to the Kernel Density Estimator
(KDE). Recall that the KDE with kernel K (which is assumed to integrate to 1 in
the second variable) is given by 1

|P |
∑

p K(p, x). The kernel is aggregated over all the
generators, which can possibly oversmooth the estimation. In contrast, the CVDE
f(x) involves K evaluated at the closest generator alone. Furthermore, assume that
all the cells have the same local volume i.e, Volp(C(p)) = 1 for all p ∈ P , and that
K monotonically decreases with respect to the distance i.e., K(p, x) ≤ K(p′, x)
when d(p, x) ≥ d(p′, x). Then the CVDE reduces to

f(x) = 1
|P |

max
p∈P

K(p, x) (B.6)

which is a variant of the KDE where the sum gets replaced by a maximum. Such
distributions are sometimes referred to as ‘max-mixtures’ [16]. An empirical com-
parison with KDE is presented in our experimental section (Section B.6.4).

B.3 Algorithmic Procedures

The CVDE presents a number of computational challenges in high dimensions
(n ≫ 3) due to the increasing geometric complexity of Voronoi tessellations. We
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Figure B.4: An illustration of the directional radius involved in volume estimation and
sampling.

propose to deploy raycasting methods on polytopes which reduce the problem to
one-dimensional subspaces. In the context of Voronoi tessellations raycasting has
been considered to explore the boundaries of the cells in [17], which has led to a US
Patent [18], as well as in [19]. We utilize these techniques for volume computation
and point sampling, and improve the time complexity through pre-computations
and parallelization.

We first introduce an algebraic quantity necessary for the subsequent methods.
Consider an arbitrary versor σ and a point z ∈ Rn. Define lz(σ) as the maximum
t such that z+ tσ is contained in C(z), and lz(σ) = ∞ if such t does not exist. We
refer to this value as a directional radius, originating at z in the direction σ (see
Figure B.4). The directional radius can be expressed via a closed and computable
formula. Denote by p the generator closest to z and for q ∈ P \ {p}, set

lqz(σ) = ∥q − z∥2 − ∥p− z∥2

2⟨σ, q − p⟩
. (B.7)

As shown in ( [20]), the directional radius is given by

lz(σ) = min
q ̸=p, lq

z(σ)≥0
lqz(σ) (B.8)

with lz(σ) = ∞ if lqz(σ) is negative for all q.

B.3.1 Volume Estimation and Sampling
We now present a way to efficiently compute the (local) volumes Volp via spherical
integration. Such an approach to integration over high-dimensional Voronoi tessel-
lations has been explored in the past by [21] and [20].

Assume that the kernel is as in Equation B.5 for a continuous K. By a change
of variables into spherical coordinates centered at p and due to convexity of C(p),
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the volumes can be rewritten as an integral over the unit sphere Sn−1 ⊆ Rn:

Volp =
∫
Sn−1

∫
[0,lp(σ)]

K(tσ)tn−1dtdσ (B.9)

where lp(σ) is the directional radius of the cell originating from its generator (z = p).
The spherical integral can be computed via Monte Carlo approximation by sampling
a finite set of versors Σp ⊆ Sn−1 uniformly and estimating the empirical average

2π n
2

|Σp|Γ( n
2 )
∑

σ∈Σp

∫
[0,lp(σ)]

K(tσ)tn−1dt (B.10)

where Γ denotes Euler’s Gamma function. In the case of Gaussian kernel (Equa-
tion B.4), by bringing the constant Vol(Sn−1) = 2π

n
2

Γ( n
2 ) under the summation the

summand simplifies to (2πh2) n
2 γ
(

n
2 , lp(σ)

)
, where γ denotes the regularized lower

incomplete Gamma function γ(a, z) = 1
Γ(a)

∫ z

0 t
a−1e−tdt.

Next, we propose a sampling procedure for the CVDE which is a version of
the hit-and-run sampling for distributions on higher-dimensional polytopes [10].
It consists in first choosing a generator p = z(0) ∈ P uniformly. Then, one
traverses the cell C(p) by constructing a Markov chain {z(i)} in the following
way. A random versor σ(i+1) ∈ Sn−1 is sampled uniformly and the next point
z(i+1) is sampled from 1

Volp
K(p, ·) restricted to the segment {z(i) + tσ(i+1) | t ∈

[−lz(i)(−σ(i+1)), lz(i)(σ(i+1))]}. As shown by [10], the Markov chain converges
w.r.t. total variation distance to the underlying distribution 1

Volp
K(p, ·) over C(p).

In practice, one terminates the sampling process after a number I of steps return-
ing the last point z(I). Figure B.5 shows an instance of hit-and-run on a simple
two-dimensional dataset.

B.3.2 Computational Complexity
The computational optimizations deserve a separate discussion. As seen from Equa-
tions B.8 and B.7, the natural way of estimating the directional radius lz(σ) for
given z ∈ Rn and σ ∈ Sn−1 would require O(n|P |) numerical operations. This
would bring the overall computational cost to O(nmaxp |Σp||P |2) for the spherical
integrals and to O(n|P |I) for a sampling run with I hit-and-run steps.

In order to optimize the algorithms, we first rewrite Equation B.7 as

lqz(σ) = ⟨q, q⟩ − ⟨p, p⟩ − 2 ⟨z, q⟩ + 2 ⟨z, p⟩
2 ⟨σ, q⟩ − 2 ⟨σ, p⟩

. (B.11)

In spherical integration, we deploy the same set of versors Σ = Σp ⊂ Sn−1 for all
the generators. This allows to pre-compute ⟨q, p⟩ and ⟨σ, p⟩ for all p, q ∈ P, σ ∈ Σ,
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Algorithm B.1 Volp computation with Gaussian kernel
Input: P ⊂ Rn set of generators

Σ ⊂ Sn−1 set of versors
Output: Volp for all p ∈ P

Compute ⟨q, p⟩ for all (q, p) ∈ P × P
Compute ⟨σ, p⟩ for all (σ, p) ∈ Σ× P
for all p ∈ P do

Initialize Volp ← 0
for all σ ∈ Σ do

Initialize lp(σ)←∞
for all q ∈ P \ {p} do
lqp(σ)← ⟨q,q⟩−2⟨q,p⟩+⟨p,p⟩

2⟨σ,q⟩−2⟨σ,p⟩
if lqp(σ) > 0 then
lp(σ)← min{lp(σ), lqp(σ)}

end if
end for
Volp ← Volp +|Σ|−1

(
2πh2

)n
2 γ
(
n
2 , lp(σ)

)
end for

end for

achieving a total computational complexity of O(n|P |2 + n|Σ||P | + |Σ||P |2).

For the sampling procedure, we similarly fix a prior finite set Σ of all avail-
able versors. This does not affect the convergence property of the hit-and-run
Markov chain assuming Σ linearly spans Rn [22]. While ⟨σ, p⟩ and ⟨q, p⟩ can be pre-
computed in O(n|P |2+n|Σ||P |) time, the terms involving z in Equation B.11 require
more care. To that end, the i-th step of the hit-and-run Markov chain is given by
z(i) = z(i−1) + t(i−1)σ(i−1) for appropriately sampled t(i−1), σ(i−1). The term ⟨z, p⟩
can then be updated inductively in O(1) as

〈
z(i), p

〉
=
〈
z(i−1), p

〉
+t(i−1) 〈σ(i−1), p

〉
.

Summing up, the cost of a hit-and-run Markov chain run reduces to O((|Σ|+|P |)I),
which does not depend on the space dimensionality n multiplicatively.

Algorithms B.1 and B.2 provide a more detailed description of volume compu-
tation and point sampling via the hit-and-run procedure respectively, including the
discussed optimizations. Note that the loops in both algorithms are independent
and involve elementary algebraic operations. This allows to utilize GPU capabili-
ties, which also significantly boosts the computation performance.

B.4 Theoretical Properties

B.4.1 Convergence

We now discuss the convergence of the CVDE when the set P of generators is
sampled from an underlying distribution. Suppose thus that there is an absolutely
continuous probability measure P = ρdx on Rn defined by a density ρ ∈ L1(Rn).
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Algorithm B.2 CVDE sampling
Input: P ⊂ Rn set of generators

Σ ⊂ Sn−1 set of versors
m desired number of samples
I number of hit-and-run steps

Output: Z = Z(I) ⊂ Rn samples from CVDE
Initialize Z(0) ∼ Unim(P )
Compute ⟨p, p⟩ for all p ∈ P
Compute ⟨z, p⟩ for all (z, p) ∈ Z(0) × P
Compute ⟨σ, p⟩ for all (σ, p) ∈ Σ× P
for i = 1 to I do

for all z ∈ Z(i−1) do
σ ← Uni(Σ), p← z(0)

Initialize lz(−σ)←∞, lz(σ)←∞
for all q ∈ P \ {p} do
lqz(σ)← ⟨q,q⟩−⟨p,p⟩−2⟨z,q⟩+2⟨z,p⟩

2⟨σ,q⟩−2⟨σ,p⟩
if lqz(σ) > 0 then
lz(σ)← min{lz(σ), lqz(σ)}

else
lz(−σ)← min{lz(−σ),−lqz(σ)}

end if
end for
Sample t ∈ [−lz(−σ), lz(σ)]
Add z + tσ to Z(i)

Update ⟨z, p⟩ ← ⟨z, p⟩+ t ⟨σ, p⟩ for all p ∈ P
end for

end for

Figure B.5: An illustration of the hit-and-run sampling procedure, with a trajectory of
length I = 4 for each generator. The sampled points are displayed in orange.

When P is sampled from P the CVDE can be considered as (the density of) a
random probability measure. We denote by Pm this random measure when the
number of generators is m i.e., Pm = fdx for P ∼ ρm.
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The following is our main theoretical result. It guarantees that Pm converges to
P with respect to a canonical notion of convergence for random measures, assuming
ρ has full support.

Theorem B.4.1. Suppose that ρ has support in the whole Rn. For any K ∈
L1(Rn × Rn) the sequence of random probability measures Pm converges to P in
distribution w.r.t. x and in probability w.r.t. P . Namely, for any measurable set
E ⊆ Rn the sequence Pm(E) of random variables converges in probability to the
constant P(E).

Proof. We outline here an idea of the proof and refer to the Appendix for full
details. For a measurable set E, Pm(E) is equal to

1
m

|P ∩ E| + residue (B.12)

where the residue bounded by (twice) the relative number R of generators whose
Voronoi cell intersects the boundary ∂E of E. The variable 1

m |P ∩E| tends to P(E)
in probability by the law of large numbers.

We then proceed to show that the boundary term R tends to 0 in probability. To
this end, we first prove that the diameters of the Voronoi cells intersecting E tend
uniformly to 0, which in turn requires a preliminary result constraining such cells in
a neighbour of E (which is assumed to be bounded). Given that, we conclude that
R tends to P(∂E) by the law of large numbers. By the Portmanteau Lemma [23],
we can assume that P(∂E) = 0 (and that E is bounded), which concludes the
proof.

Note that the above results holds for any (integrable) kernel, thus even for dis-
continuous ones. The kernel is fixed, and there is no need for an eventual bandwidth
(Equation B.5) to vanish asymptotically. This is in contrast with KDE, which re-
quires h to tend to 0 at an appropriate rate in order to obtain convergence to
ρ [11, 12]. This is because of the local geometric bias inherent to the KDE, as dis-
cussed in Section B.1. In order to obtain convergence, such bias has to be amended
with a vanishing bandwidth that annihilates the local geometry of the kernel.

We remark that the assumption on the support of ρ in Theorem B.4.1 is satisfied
in the presence of noise, which is realistic in practical scenarios. Assuming that data
exhibit, say, Gaussian noise, the actual underlying distribution is of full support
even when the ideal one is concentrated on a submanifold of Rn.

B.4.2 Bandwidth Asymptotics

Consider a kernel in the form of Equation B.5. The asymptotics with respect to h
(with fixed set of generators P ) can be easily deduced:
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Proposition B.4.2. For a continuous K : Rn → R≥0, the following hold:

• As h tends to 0, f converges in distribution to the empirical measure 1
|P |
∑

p∈P δp,
where deltap denotes the Dirac’s delta centered in p i.e., the probability mea-
sure concentrated in the singleton {p}.

• Consider the restriction of the kernel to a bounded region A (i.e., its product
with χA). As h tends to +∞, f converges in distribution to the VDE f̃ .

Proof. For the first statement, note that 1
hnK( x

h ) tends to K(0)δ0 in distribution
by the general theory of approximators of unity. Since limh→0 Volp(C(x)) = K(0)
as well for every p, the claim follows from the definition of the CVDE (Equation
B.3). As for the second part, observe that K(x, p) tends to K(0) by continuity of K
and thus f(x) tends to f̃(x) for almost every x. To conclude, pointwise convergence
of PDFs implies convergence in distribution (Scheffé’s Lemma).

The asymptotics for small bandwidth are the same as for the KDE. For band-
width tending to infinity, however, the KDE tends to the uniform distribution
over A, while the CVDE still gives reasonable estimates in the form of its non-
compactified version.

B.5 Related Work

Non-parametric Density Estimation. The first traces of systematic density
estimation date back to the introduction of histograms [24]. Those have been
subsequently considered with a variety of cell geometries such as rectangles, trian-
gles [25] and hexagons [26]. The choice of geometry constitutes the main source of
bias for the histogram-based density estimator.

Arguably, the most popular density estimator is the KDE, first discussed by [27]
and [28]. Numerous extensions have followed, for example, to the multivariate
case [29, 30], bandwidth selection methods [31, 32] and algorithms for adaptive
bandwidths [33, 34]. The latter aim to partially amend for the local geometric
bias of the KDE, which is in line with the present work. However, adapting the
bandwidth alone provides a partial solution since it enables different scales of the
same local geometry. Among applications, the KDE has been deployed to estimate
traffic incidents [35], archeological data [36] and wind speed [37] to name a few.

VDE and its Applications. The VDE has been originally introduced by [5] un-
der the name ’ideal estimator’ because of its local geometric adaptivity. Subsequent
works have discussed regularization [13] and lower-dimensional aspects [14]. The
VDE has seen applications to a variety of real-world densities such as neurons in
the brain [7], photons [8] and stars in a galaxy [9]. Although promising, the VDE
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has been previously limited to low-dimensional problems.

Theoretical Convergence. Convergence of the VDE has been previously con-
sidered in the literature, usually in the language of Poisson point processes. For
uniform underlying distribution, pointwise convergence of the averaged estimated
density (i.e., unbiasedness: limm→∞ EP ∼ρm [f̃(x)] = ρ(x) for almost all x) has been
proven by [38]. For non-uniform distributions, the same convergence has been
shown by [13] with strong continuity assumptions on the density, which allows a
reduction to the uniform case. Our theoretical result is based on a different, non-
averaged notion of convergence and holds for the more general CVDE with no
continuity assumptions.

B.6 Experiements

B.6.1 Dataset Description
In our experiments, we evaluate the CVDE on datasets of different nature: simple
synthetic distributions of Gaussian type, image data in pixel-space, and sound data
in a frequency space. The datasets we deploy are the following:

Gaussians and Gaussian Mixtures: for synthetic experiments we generate two
types of datasets, each containing 1000 training and 1000 test points. The first one
consists of samples from an n-dimensional standard Gaussian distribution. The sec-
ond one is sampled from a Gaussian mixture density ρ = 1

2 (ρ1 + ρ2). Here, ρ1, ρ2
are Gaussian distributions with means µ1 = (−0.5, 0, · · · , 0), µ2 = (0.5, 0, · · · , 0)
and standard deviations σ1 = 0.1, σ2 = 100 respectively.

MNIST [39]: the dataset consists of 28×28 grayscale images of handwritten digits
which are normalised in order to lie in [0, 1]28×28. For each experimental run, we
sample half of the 60000 training datapoints in order to evaluate the variance of
the estimation. The test set size is 10000.

Anuran Calls [40]: the datasets consists of 7195 calls from 10 species of frogs which
are represented by 21 normalised mel-frequency cepstral coefficients in [0, 1]21. We
retain 10% of data for testing and again sample half of the training data at each
experimental run.

B.6.2 Comparison with VDE
In this section, we evaluate empirically the necessity of compactification for high-
dimensional data. To this end, we visually compare samples from the CVDE (with
Gaussian kernel) and from the the VDE. The VDE is implemented with a bounding
hypercube A = [− 7

2 ,
7
2 ]n as described in Section B.2.
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n = 2 n = 10

Original

VDE

CVDE

Figure B.6: Visual comparison between samples from the CVDE and the VDE esti-
mating an n-dimensional Gaussian for n = 2, 10. In the 10-dimensional case, points are
projected onto a plane. In high dimensions, the VDE appears as biased towards a uniform
distribution. This is because of abundance of unbounded cells, over which the estimated
density is constant.

We consider the Gaussian dataset in n = 2 and n = 10 dimensions. For both
the estimators, 1000 points are sampled via hit-and-run (with trajectories of length
I = 1000) from the estimated density. The bandwidth for the CVDE is chosen
following Scott’s rule [2] and amounts to h = 0.33 in two dimensions and to 0.66 in
ten dimensions.

The results are presented in Figure B.6. In two dimensions, both the estimators
produce samples that are visually close to the ground-truth distribution. However,
in ten dimensions the sampling quality of VDE drastically decreases, while the
CVDE still produces a satisfactory result. In the provided examples, more than
85% of points sampled from the VDE belong to the Voronoi cells intersecting the
boundary of A. Since the VDE is uniform within each cell, the estimation and the
consequent sampling is biased by the choice of the bounding region A, especially in
high dimensions.
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10-dimensional Gaussian MNIST

Figure B.7: Stabilization of the Monte Carlo spherical integral. The plots display the
average log-likelihood of the estimated density on the training set as the number of sampled
versors increases. For each of the 2 datasets, 10 experimental runs are shown.

B.6.3 Convergence of the Spherical Integral

We now empirically estimate the amount of Monte Carlo samples required for spher-
ical integration (Equation B.10). To this end, we visualize how the approximation
for the volumes in the CVDE (with Gaussian kernel) changes as the number |Σ|
of versors increases. We consider two datasets: the 10-dimensional Gaussian one
and MNIST. Each plot in Figure B.7 displays 10 curves, each corresponding to one
experimental run. What is shown is the average log-likelihood of the estimated
density on the training set, which correponds up to an additive constant to the av-
erage negative logarithmic volume − 1

|P |
∑

p∈|P | log Volp(C(p)) of the Voronoi cells.
The bandwidth is again chosen according to Scott’s rule for the Gaussian dataset
while it is set to 1 for MNIST. Evidently, all the curves are stable at |Σ| = 5000
sampled versors, which we fix as a parameter in later experiments.

B.6.4 Comparison with KDE

We now compare the CVDE with the KDE (both with Gaussian kernel) on the
synthetic and real-world data described in Section B.6.1. However, the distribution
of high-dimensional real-world data is too sparse in the original ambient space to
allow for a meaningful comparison. We consequently pre-process the MNIST and
the Anuran Calls datasets via Principal Component Analysis (PCA) and orthog-
onally project them to the 10-dimensional subspace with largest variance. We set
the dimension of the synthetic Gaussian mixture to 10 as well.

We compare the CVDE with the standard KDE as well as the KDE with local,
adaptive bandwidths (AdaKDE) described in [33]. In the AdaKDE the bandwidth
hp depends on p ∈ P and is smaller when data is denser around p. Specifically,
denote by f̂(p) the standard KDE estimate with a global bandwidth h. Then
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Gaussian Mixture MNIST

Anuran Calls

Figure B.8: Empirical comparisons between the CVDE, the KDE and the KDE with
adaptive bandwidth (AdaKDE). The plots display the average log-likelihood over the test
set as the bandwidth varies. The shadowed region represents standard deviation (with
respect to sampling of the dataset) on 5 experimental runs.

hp = hλp where λp = (g/f̂(p)) 1
2 and g =

∏
q∈P f̂(q)

1
|P | .

We score the estimators via the average log-likelihood on a test set Ptest i.e.,
1

|Ptest|
∑

p∈Ptest
log f(p). Such score measures the adherence of the estimated density

to the ground-truth one and penalizes overfitting thanks to the deployment of the
test set.

The results are displayed in Figure B.8 with the bandwidth varying for all the
estimators on a logarithmic scale. For AdaKDE we vary the global bandwidth for
f̂ . Sampling of training and test data is repeated for 5 experimental runs, from
which mean and standard deviation of the score are displayed.

As can be seen, on the synthetic dataset (Gaussian Mixture) the CVDE out-
performs the baselines at the respective best bandwidth. This shows that the local
geometric adaptivity of the CVDE leads to density estimates that are closer to
the ground-truth distribution. While AdaKDE outperforms the KDE due to its
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adaptivity, it still suffers from bias due to the Gaussian kernel (albeit with a lo-
cal bandwidth) as mentioned in Section B.5. On the real-world datasets (MNIST
and Anuran Calls) all the considered estimators exhibit a comparable best perfor-
mance. We hypothesize that the reason behind this is that on small bandwidths
the geometry of the kernel outweighs the adaptivity of the estimators. However,
the CVDE outperforms the baselines on larger bandwidths. This is consistent with
the discussion in Section B.4.2: the CVDE has better asymptotics than the KDE
since it tends to the VDE while the KDE degenerates to a uniform estimate.

B.7 Conclusions and Future Work

In this work, we defined an extension of the Voronoi Density Estimator suitable for
high-dimensional data, providing efficient methods for approximate computation
and sampling. Additionally, we proved convergence to the underlying data density.

A promising line of future research lies in exploring both theory and applications
of the VDE and CVDE to metric spaces beyond the Euclidean one, in particular
higher-dimensional Riemannian manifolds. Spheres, for example, naturally appear
in the context of normalised data, while complex projective spaces of arbitrary
dimension arise as Kendall shape spaces on the plane [41].
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B.9 Appendix

We provide here a proof of our main theoretical result with full details.

Theorem B.9.1. Suppose that ρ has support in the whole Rn. For any K ∈
L1(Rn ×Rn) the sequence of random probability measures Pm = fdx defined by the
CVDE with m generators converges to P in distribution w.r.t. x and in probability
w.r.t. P . Namely, for any measurable set E ⊆ Rn the sequence Pm(E) of random
variables over P sampled from ρ converges in probability to the constant P(E).

We shall first build up some machinery necessary for the proof. First of all, the
following fact on higher-dimensional Euclidean geometry will come in hand.

Proposition B.9.2 ( [42], Lemma 5.3). Let x ∈ Rn, δ > 0. There exist constants
1 < c1 < c2 − 1 < 31 such that for any open cone K ⊆ Rn centered at x of solid
angle π

12 and any p, q, z ∈ K, if

d(x, p) < δ, c1δ ≤ d(x, q) < c2δ, d(x, z) ≥ 32δ
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then d(z, q) < d(z, p).

Figure B.9: Graphical depiction of sets and points appearing in the proof of Proposition
B.9.3.

We can now deduce the following.

Proposition B.9.3. Let ∅ ≠ E ⊆ Rn be a bounded measurable set. There exists
a bounded measurable set B ⊇ E such that as m = |P | tends to ∞, the probability
with respect to P ∼ ρm that every Voronoi cell intersecting E is contained in B
tends to 1.

Proof. Let δ = 2diam E = 2 supx,y∈E d(x, y) be twice the diameter of E. For L > 0,
consider the L-neighbourhood of E

EL = {x ∈ X | d(x,E) < L}.

First of all, if E has vanishing measure, we can replace it without loss of generality
by some EL, which has nonempty interior.

We claim that B = E32δ is as desired. To see that, consider an arbitrary x ∈ E
and let {Kj}j be a finite minimal set of open cones centered at x of solid angle π

12
whose closures cover Rn. As m tends to ∞, since ρ has support in the whole Rn,
by the law of large numbers the probability of the following tends to 1:

• P intersects E (recall that E has non-vanishing measure),

• for every j, P intersects (E(c2− 1
2 )δ \Ec1δ) ∩Kj , where c1, c2 are the constants

from Proposition B.9.2.

To prove our claim, we can thus conditionally assume the above. Consider now
a Voronoi cell intersecting E and suppose by contradiction that z is an element of
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the cell not contained in B. Let q ∈ P be a generator in (E(c2− 1
2 )δ \Ec1δ)∩Kj where

Kj is the cone containing z. Since P intersects E, the generator p of the cell lies
in Ediam(E) = E δ

2
and consequently d(x, p) < δ. If p ̸∈ Kj , then one can replace it

with its orthogonal projection on the line passing through x and z. The hypotheses
of Proposition B.9.2 are then satisfied and we conclude that d(z, q) < d(z, p). This
is absurd since p is the generator of C(z).

For a bounded measurable set E ⊆ Rn, denote by

DE = max
p∈P

C(p)∩E ̸=∅

diam C(p)

the maximum diameter of a Voronoi cell intersecting E.

Proposition B.9.4. DE, thought as a random variable in P , converges in proba-
bility to 0 as m = |P | tends to ∞.

Proof. The proof is inspired by Theorem 4 in [43]. Consider a finite minimal set of
open cones {Kj}j centered at 0 of solid angle π

12 whose closures cover Rn. Then
there is a constant c > 0 such that for each p ∈ P

diam C(p) ≤ cmax
j
Rp,j

where Rp,j = minq∈P ∩(p+Kj) d(p, q) denotes the distance from p to its closest
neighbour in the cone Kj centered in p (and Rp,j = ∞ if P ∩ (p+Kj) = ∅). This
follows from Proposition B.9.2 applied with x = p to all the cones centered at the
generators, with an opportune δ for each of them. For each ε > 0 we thus have an
inclusion of events

{DE > ε} ⊆

 max
p,j

C(p)∩E ̸=∅

Rp,j >
ε

c

 ⊆

⊆
⋃
i,j

{
P ∩ (pi +Kj) ∩B

(
pi,

ε

c

)
= ∅ and C(pi) ∩ E ̸= ∅

}
where B(x, r) is the open ball centered in x of radius r. In the above, we assumed
that the set P is equipped with an ordering. For x ∈ Rn denote by Ex,j the event
appearing at the right member of the above expression for x = pi. We can then
bound the probability with respect to a random P ∼ ρm, with m = |P | fixed, as

PP ∼ρm(DE > ε) ≤
∑
i,j

PP ∼ρm(Epi,j) = m
∑

j

∫
Rn

ρ(x)PP ∼ρm(Ex,j | p1 = x) dx.

Since the points in P are sampled independently we have
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PP ∼ρm(Ex,j | p1 = x, C(x) ∩ E ̸= ∅) =
(

1 − P
(

(x+Kj) ∩B
(
x,
ε

c

)))m−1
:=

:= (1 −M(x))m−1.

Pick the set B guaranteed by Proposition B.9.3. We can then conditionally
assume that every Voronoi cell intersecting E is contained in B, which implies
PP ∼ρm(Ex,j) = 0 for x ̸∈ B. The limit we wish to estimate reduces to

lim
m→∞

m
∑

j

∫
Rn

ρ(x)PP ∼ρm(Ex,j | p1 = x) dx =
∑

j

lim
m→∞

∫
B

ρ(x)m(1−M(x))m−1 dx.

Since B is bounded and ρ has support in the whole Rn, M(x) is (essentially)
bounded from below by a strictly positive constant as x varies in B. The limit can
thus be brought under the integral and putting everything together we get:

lim
m→∞

PP ∼ρm(DE > ε) ≤
∑

j

∫
B

ρ(x) lim
m→∞

m(1 −M(x))m−1 dx = 0.

We are now ready to prove Theorem B.9.1.

Proof. By the Portmanteau Lemma ( [23]), it is sufficient to that Pm(E) converges
to P(E) in probability for any bounded measurable set E ⊆ Rn which is a continuity
set for P i.e., P(∂E) = 0 where ∂E is the (topological) boundary of E. Pick such
E. By definition of the CVDE, for a fixed set P of generators we have that

Pm(E) = 1
m

|{p ∈ P | C(p) ⊆ E}| +

R︷ ︸︸ ︷
1
m

∑
p∈P

C(p)̸⊆E
C(p)∩E ̸=∅

Volp(C(p) ∩ E)
Volp(C(p))

= 1
m

|P ∩ E| +R− 1
m

|{p ∈ P ∩ E | C(p) ̸⊆ E}|.

Since the Voronoi cells are closed, any cell intersecting E not contained in E in-
tersects ∂E. Thus

∣∣R− 1
m |{p ∈ P ∩ E | C(p) ̸⊆ E}|

∣∣ ≤ 2R where R := 1
m |{p ∈

P | C(p) ∩ ∂E ̸= ∅}|. Now, the random variable 1
m |P ∩E| tends to P(E) in proba-

bility as m tends to ∞ by the law of large numbers. In order to conclude, we need
to show that R tends to 0 in probability.

Fix ε > 0. For L > 0, consider the L-neighbor ∂EL = {x ∈ X | d(x, ∂E) < L}
of the boundary ∂E. If the diameter of the Voronoi cells intersecting ∂E is less
than L then all such cells are contained in ∂EL. Thus:



B.9. APPENDIX B21

PP ∼ρm (R > ε) ≤ PP ∼ρm

(
1
m

|P ∩ ∂EL| > ε and D∂E < L

)
+ PP ∼ρm (D∂E ≥ L)

≤ PP ∼ρm

(
1
m

|P ∩ ∂EL| > ε

)
+ PP ∼ρm (D∂E ≥ L)

≤ PP ∼ρm

(∣∣∣∣P(∂EL) − 1
m

|P ∩ ∂EL|
∣∣∣∣ > ε− P(∂EL)

)
+

+ PP ∼ρm (D∂E ≥ L) .

Since ∂E is closed, ∂E = ∩L>0∂EL and thus limL→0 P(∂EL) = P(∩L∂EL) =
P(∂E) = 0 since E is a continuity set. This implies that there is an L such that
ε > P(∂EL). The right hand side of the Equation above tends then to 0 by the law
of large numbers and Proposition B.9.4, which concludes the proof.
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An Efficient and Continuous
Voronoi Density Estimator

Giovanni Luca Marchetti, Vladislav Polianskii, Anastasiia Varava, Florian
T. Pokorny, Danica Kragic

Abstract

We introduce a non-parametric density estimator deemed Radial Voronoi
Density Estimator (RVDE). RVDE is grounded in the geometry of Voronoi
tessellations and as such benefits from local geometric adaptiveness and broad
convergence properties. Due to its radial definition RVDE is continuous and
computable in linear time with respect to the dataset size. This amends for
the main shortcomings of previously studied VDEs, which are highly discon-
tinuous and computationally expensive. We provide a theoretical study of
the modes of RVDE as well as an empirical investigation of its performance
on high-dimensional data. Results show that RVDE outperforms other non-
parametric density estimators, including recently introduced VDEs.

C.1 Introduction

The problem of estimating a Probability Density Function (PDF) from a finite
set of samples lies at the heart of statistics and arises in several practical scenar-
ios [1, 2]. Among density estimators, the non-parametric ones aim to infer a PDF
through a closed formula. Differently from parametric methods, they do not require
optimization and ideally provide an estimated PDF which is simple, interpretable
and computationally efficient. Two traditional examples of non-parametric density
estimators are the Kernel Density Estimator (KDE; [3, 4]) and histograms [5, 6].
KDE consists of a mixture of local copies of a kernel around each datapoint while
histograms partition the ambient space into local cells (‘bins’) where the estimated

C1



C2 PAPER C. AN IMPROVED VORONOI DENSITY ESTIMATOR

Figure C.1: An example of a density estimated via RVDE. The Voronoi tessellation is
depicted in solid gray. The estimated density is defined by the property that its conical
integral over the rays originating from the datapoints (orange) is constant.

PDF is constant.

Both histograms and KDE suffer from bias due to the prior choice of a local
geometric structure i.e., the bins and the kernel respectively. This bias gets ex-
acerbated in high-dimensional ambient spaces. The reason is that datasets grow
exponentially in terms of geometric complexity, making a fixed simple geometry
unsuitable for estimating high-dimensional densities. This has led to the introduc-
tion of the Voronoi Density Estimator (VDE; [7]). VDE relies on the geometric
adaptiveness of Voronoi cells, which are convex polytopes defined locally by the
data [8]. The PDF estimated by VDE is constant on such cells, thus behaving
as an adaptive version of histograms. Due to its local geometric properties, VDE
possesses convergence guarantees to the ground-truth PDF which are more general
than the ones of KDE.

The geometric benefits of VDE, however, come with a number of shortcomings.
First, the Voronoi cells and in particular their volumes are computationally expen-
sive to compute in high dimensions. Although this has been recently attenuated
by proposing Monte Carlo approximations [9], VDE falls behind methods such as
KDE in terms of computational complexity. Second, VDE (together with its gen-
eralized version from [9] deemed CVDE) is highly discontinuous on the boundaries
of Voronoi cells. The estimated PDF consequently suffers from large variance and
instability with respect to the dataset. This is again in contrast to KDE, which is
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continuous in its ambient space.

In this work, we propose a novel non-parametric density estimator deemed Ra-
dial Voronoi Density Estimator (RVDE) which addresses the above challenges.
Similarly to VDE, RVDE integrates to a constant on Voronoi cells and thus shares
its local geometric advantages and convergence properties. In contrast to VDE,
RVDE is continuous and computable in linear time with respect to the dataset size.
The central idea behind RVDE is to define the PDF radially from the datapoints
so that the (conical) integral over the ray cast in the corresponding Voronoi cell
is constant (see Figure C.1). This is achieved via a ‘radial bandwidth’ which is
defined implicitly by an integral equation. Intuitively, the radial approach reduces
the high-dimensional geometric challenge of defining a Voronoi-based estimator to
a one-dimensional problem. This avoids the expensive volume computations of the
original VDE and guarantees continuity because of the fundamental properties of
Voronoi tessellations. Another important aspect of RVDE is its geometric distribu-
tion of modes. We show that the modes either coincide with the datapoints or lie
along the edges of the Gabriel graph [10] depending on a hyperparameter analogous
to the bandwidth in KDE.

We compare RVDE with CVDE, KDE and the adaptive version of the latter in
a series of experiments. RVDE outperforms the baselines in terms of the quality
of the estimated density on a variety of datasets. Moreover, it runs significantly
faster and with lower sampling variance compared to CVDE. This empirically con-
firms that the geometric and continuity properties of RVDE translate into benefits
for the estimated density in a computationally efficient manner. We provide an
implementation of RVDE (together with baselines and experiments) in C++ at a
publicly available repository 1. The code is parallelized via the OpenCL framework
and comes with a Python interface. In summary our contributions include:

• A novel density estimator (RVDE) based on the geometry of Voronoi tessel-
lations which is continuous and computationally efficient.

• A complete study of the modes of RVDE and their geometric distribution.

• An empirical investigation comparing RVDE to KDE (together with its adap-
tive version) and previously studied VDEs.

C.2 Related Work

Non-Parametric Density Estimation. Non-parametric methods for density es-
timation trace back to the introduction of histograms [6]. Histograms have been
extended by considering bin geometries beyond the canonical rectangular one, for

1https://github.com/giovanni-marchetti/rvde

https://github.com/giovanni-marchetti/rvde
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example triangular [11] and hexagonal [12] geometries. Another popular density es-
timator is KDE, first discussed by [4] and [13]. The estimated density is a mixture of
copies of a priorly chosen distribution (‘kernel’) centered at the datapoints. KDE
has been extended to the multivariate case [14, 15] and has seen improvements
such as bandwidth selection methods [16, 17] and algorithms for adaptive band-
widths [18, 19]. Applications of KDE include estimation of traffic incidents [20],
of archaeological data [21] and of wind speed [22] to name a few. As discussed in
Section C.1, both KDE and histograms suffer from lack of geometric adaptiveness
due to the choice of prior local geometries.

Another class of non-parametric methods are the orthogonal density estima-
tors [23,24]. Those consist of choosing a discretized orthonormal basis of functions
and computing the coefficients of the ground-truth density via Monte-Carlo integra-
tion over the dataset. When the basis is the Fourier one, the estimator is referred
to as ‘wavelet estimator’. The core drawback is that orthogonal density estimators
do not scale efficiently to higher dimensions. When considering canonical tensor
product bases the complexity grows exponentially w.r.t. the dimensionality [25],
making the estimator unfeasible to compute.

Voronoi Density Estimators. The first Voronoi Density Estimator (VDE) has
been pioneered by [7]. The estimated density relies on Voronoi tessellations in or-
der to achieve local geometric adaptiveness. This is the main advantage of VDE
over methods such as KDE. The original VDE has seen applications to real-world
densities such as neurons in the brain [26], photons [27] and stars in a galaxy [28].
However, the method is not immediately extendable to high-dimensional spaces
because of unfeasible computational complexity of volumes and abundance of un-
bounded Voronoi cells. This has been only recently amended by [9] by introducing
approximate numerical algorithms and by shaping of the density via a kernel. In
the present work, we aim to design an alternative version of the original VDE which
is continuous and does not rely on volume computations. The resulting estimator
is thus stable and computationally efficient while still benefiting from the geometry
of Voronoi tessellations.

C.3 Background

In this section we recall the class of non-parametric density estimators which we
will be interested in throughout the present work. To this end, let P ⊆ Rn be a
finite set and consider the following central notion from computational geometry.

Definition C.3.1. The Voronoi cell2 of p ∈ P is:

C(p) = {x ∈ Rn | ∀q ∈ P d(x, q) ≥ d(x, p)}. (C.1)

2Sometimes referred to as Dirichlet cell.
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The Voronoi cells are convex polytopes that intersect at the boundary and cover
the ambient space Rn. The collection {C(p)}p∈P is referred to as Voronoi tessel-
lation generated by P . Note that although the Voronoi tessellations are defined
in an arbitrary metric space, the resulting cells might be non-convex for distances
different from the Euclidean one. Since convexity will be crucial for the following
constructions, we stick to the Euclidean metric for the rest of the work.

We call density estimator any mapping associating a probability density function
fP ∈ L1(Rn) to a finite set P ⊆ Rn. The following class of density estimators
generalizes the original one by [7].

Definition C.3.2. A Voronoi Density Estimator (VDE) is a density estimator
P 7→ fP such that for each p ∈ P :∫

C(p)
fP (x) dx = 1

|P |
. (C.2)

VDEs stand out among density estimators for their geometric properties. This
is because the Voronoi cells are arbitrary polytopes that are adapted to the lo-
cal geometry of data. For VDEs all the Voronoi cells have the same estimated
probability, making such estimators locally adaptive from a geometric perspective.
This is reflected, for example, by the general convergence properties of VDEs. The
following is the main theoretical result from [9].

Theorem C.3.1. Let P 7→ fP be a VDE and suppose that P is sampled from a
probability density ρ ∈ L1(Rn) with support in the whole Rn. For P of cardinality
m consider the probability measure Pm = fP dx which is random in P . Then the
sequence Pm converges to P = ρdx in distribution w.r.t. x and in probability w.r.t.
P . Namely, for any measurable set E ⊆ Rn the sequence of random variables
Pm(E) converges in probability to the constant P(E).

In contrast, the convergence of other density estimators such as KDE requires
the kernel bandwidth to vanish asymptotically [29]. The bandwidth vanishing is
necessary in order to amend for the local geometric bias inherent in KDE as dis-
cussed in Section C.1.

The following canonical construction of a VDE deemed Compactified Voronoi
Density Estimator (CVDE) is discussed by [9]. Given an integrable kernel K :
Rn × Rn → R>0 the estimated density is defined as

fP (x) = K(p, x)
|P | Volp(C(p)) (C.3)

where p is the closest point in P to x and Volp(C(p)) =
∫

C(p) K(p, y) dy. The latter
volumes are approximated via Monte Carlo methods since they become unfeasible
to compute exactly as dimensions grow. The resulting density inherits the same
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Figure C.2: Illustration of the quantity l(x) involved in the definition of RVDE (Defini-
tion C.4.1). The estimated density integrates to a constant over all the infinitesimal cones
(blue) in C(p) originating from p.

regularity as K when restricted to each Voronoi cell but jumps discontinuously
when crossing the boundary of Voronoi cells (see Figure C.3). Motivated by this,
the goal of the present work is to introduce a continuous and efficient VDE.

C.4 Method

C.4.1 Radial Voronoi Density Estimator

In this section we outline a general way of constructing a VDE with continuous
density function. Our central idea is to define the latter radially w.r.t. the data-
points p ∈ P . We start by rephrasing the integral over a Voronoi cell (Equation
C.2) in spherical coordinates:∫

C(p)
fP (x) dx =

∫
Sn−1

∫ l(p+σ)

0
tn−1fP (p+ tσ) dt︸ ︷︷ ︸

Conical Integral

dσ. (C.4)

Here Sn−1 ⊆ Rn denotes the unit sphere and l(x) ∈ [0,+∞] denotes the length of
the segment contained in C(p) of the ray cast from p passing through x i.e.,

l(x) = sup
{
t ≥ 0 | p+ t

x− p

d(x, p) ∈ C(p)
}
. (C.5)

We refer to Figure C.2 for a visual illustration. Note that l(x) is defined for x ̸= p
and is continuous in its domain since l(x) = d(x, p) = d(x, q) for x ∈ C(p) ∩ C(q).

We aim to solve Equation C.4 by forcing the conical integral in Equation C.4
to be constant. To this end, we fix a continuous and strictly decreasing function
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K : R>A → R≥0 (a ‘kernel’) defined on a half-line R>A, A < 0, with the property
that tn−1K(t) is integrable on R>0. By an ansatz we look for a density in the form

fP (x) = K (β(l(x))d(x, p))
α|P |Vol(Sn−1) (C.6)

where α > 0 is a hyperparameter and β : R>0 → R is a function that we would
like to determine. The latter intuitively represents a radial bandwidth. The density
fP is continuous since the discontinuity of l at x = p is amended by the vanishing
of d(x, p). Equation C.2 is satisfied if for every l > 0:∫ l

0
tn−1K(β(l)t) dt = α. (C.7)

Since K is strictly decreasing, the above expression always has a unique solution
β(l) > A

l assuming that tn−1K(t) is not integrable around A. Such a guaranteed
solution can be computed via any root-finding algorithm and is continuous w.r.t. l.
We provide an analysis of the function β and a discussion of the Newton-Raphson
method for its computation in Section C.4.3.

The derivations above bring us to the following definition.

Definition C.4.1. Fix an α > 0 and a continuous function K : R>A → R>0 with
the domain bound A < 0. Assume the following:

• K(0) = 1,

• K is strictly decreasing,

• |t|n−1K(t) is integrable around +∞ but not integrable around A.

The Radial Voronoi Density Estimator (RVDE) is the density estimator defined by
Equation C.6 where β is the function defined implicitly by Equation C.7.

The following two standard families of kernels K satisfy the above requirements:

Exponential Rational
K(t) = e−t K(t) = 1

(t+1)k

(C.8)

where k > n. The domain bounds are A = −∞ and A = −1 respectively.
When n = 1 and K is the exponential kernel, the function β is closely related to
the Lambert W function [30] via the expression:

β(l) = 1
α

+W

(
− l

α
e− l

α

)
. (C.9)

We provide an empirical comparison between the two kernels from Equation C.8 in
Section C.5.3.
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The intuition behind the hyperparameter α is that it controls the trade-off
between the amount of density concentrated around P and away from it (i.e., on
the boundary of Voronoi cells). Indeed as α → 0+ RVDE tends (in distribution)
to the discrete empirical measure over P while as α → +∞ it tends to a measure
concentrated on the boundary of Voronoi cells. This can be deduced from Equation
C.7 since β(l) tends to +∞ and to A/l respectively and thus Equation C.6 tends to
0 for d(x, p) ̸= 0, l(x). This intuition around α will be corroborated by Proposition
C.4.3, where we study how it controls the distribution of modes of RVDE and
consequently propose a heuristic selection procedure.

KDE
[4]

Original VDE
[7]

CVDE
[9]

RVDE
Ours

Figure C.3: From left to right: heatmaps of KDE, of the two VDEs from the literature
and of our RVDE.

C.4.2 Computational Complexity and Sampling
We now discuss the computational cost of evaluating RVDE at a point x ∈ Rn.
To begin with, the closest p ∈ P to x can be found in logarithmic time w.r.t. |P |
by organizing P in an efficient data structure for nearest neighbor lookups such
as a k-d tree. Then l(x) can be computed in linear time via the following closed
expression ( [9]):

l(x) = min
q ̸=p, lq(x)≥0

lq(x) (C.10)

where
lq(x) = d(q, p)2

2
〈

x−p
d(x,p) , q − p

〉 . (C.11)

The computational cost of evaluating fP (x) is thus linear w.r.t. |P |. The remaining
compute essentially reduces to solving Equation C.7, which depends on the inte-
grator, the root-finder algorithm adopted and the desired precision.

The formulation of RVDE enables a simple and efficient procedure for sam-
pling from the estimated density. In order to sample, one first chooses a p ∈ P
uniformly since fP integrates to 1

|P | on each Voronoi cell (Equation C.2). Since
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tn−1fP (p+ tσ) integrates to a constant on the ray r = {p+ tσ}t≥0 ∩C(p) for every
σ ∈ Sn−1, one then samples σ uniformly from the sphere. Finally one samples t
from the one-dimensional density tn−1K(t) restricted to the interval [0, l(p + σ)].
The computational complexity of the latter step depends on the kernel as well
as of the sampling method. The result of the sampling is p + tσ. Because of the
computational cost of l(p+σ), the sampling complexity of RVDE is linear w.r.t. |P |.

RVDE is more efficient than the VDE discussed by [9] (see the end of Section
C.3). The latter relies on Monte Carlo integration for numerical approximation of
volumes of Voronoi cells and has complexity O(Σ|P |2) where Σ is the number of
Monte Carlo samples. Compared to KDE, RVDE has the same computational com-
plexity (for both evaluation and sampling) while retaining the geometric benefits
of a VDE.

C.4.3 Study of β and Modes

In this section we discuss qualitative properties and computational aspects of the
function β defined implicitly by Equation C.7 and consequently characterize the
modes of RVDE. We start by presenting an explicit expression of the Newton-
Raphson iteration for the computation of β(l).

Proposition C.4.1. Fix l > 0 and suppose K ∈ C1(R>A) i.e., it is continu-
ously differentiable. Then the iteration βm+1 of the Newton-Raphson method for
computing β(l) by solving Equation C.7 takes form:

βm+1 = βm + βm

n

(
1 − lnK(βml) − nα

lnK(βml) − n
∫ l

0 t
n−1K(βmt) dt

)
. (C.12)

Moreover, if K is convex then the Newton-Raphson method converges for any initial
value β0 i.e., limm→∞ βm = β(l).

We refer to the Appendix for a proof. Note that the convexity assumption is
satisfied by both the kernels from Equation C.8. Proposition C.4.1 enables to com-
pute β(l) and together with Section C.4.2 provides all the algorithmic details for
implementing RVDE.

Next, we outline a qualitative study of the function l 7→ β(l).

Proposition C.4.2. The function β : R>0 → R is increasing, has a zero at
l = (nα) 1

n and has an horizontal asymptote:

lim
l→+∞

β(l) =
(

1
α

∫ ∞

0
tn−1K(t) dt

) 1
n

. (C.13)
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Moreover if K ∈ C1(R>A) then β ∈ C1(R>0) and it satisfies the differential equa-
tion: (

l − nα

ln−1K(β(l)l)

)
dβ
dl (l) = −β(l). (C.14)

We refer to the Appendix for a proof. As discussed in Section C.4.1, β gener-
alizes the Lambert W function. The properties and the differential equation from
Proposition C.4.2 generalize their well-known instances for the W function [30].

We now focus on the study of modes. Our goal is to describe the modes of RVDE
completely. This is an advantage over density estimators such as KDE, where the
modes are challenging to describe and to compute approximately [31,32]. Denote by
ε = (nα) 1

n the zero of β. Proposition C.4.2 implies that for x ∈ Rn, the density fP

decreases radially w.r.t. p in the direction of x if l(x) > ε and increases otherwise.
This leads to the following result.

Proposition C.4.3. The modes of fP are classified as follows:

(1) p ∈ P if d(p, q) > 2ε for every Voronoi cell C(q) adjacent to C(p),

(2) p+q
2 for p, q ∈ P if p+q

2 ∈ C(p) ∩ C(q) and d(p, q) < 2ε,

(3) all points belonging to the segment [p, q] for p, q ∈ P if p+q
2 ∈ C(p)∩C(q) and

d(p, q) = 2ε.

We refer to the Appendix for a proof and to Figure C.4 for an illustration. Since
ε depends monotonically on the hyperparameter α, the latter controls the thresh-
old for distances between adjacent points in P below which the mode gets pushed
away from such points towards the boundary of the Voronoi cells. Intuitively, α
determines the extent by which points in P are considered ‘isolated’ (i.e., a mode)
or otherwise get ‘merged’ by placing a mode between them.

An alternative geometric formulation of Proposition C.4.3 is the following.
Consider the Gabriel graph of P [10] containing an edge between p and q iff
p+q

2 ∈ C(p) ∩ C(q) and discard all the edges of length greater than 2ε. The modes
of RVDE are then associated with (1) all isolated vertices, (2) midpoints of edges
and (3) whole edges of length 2ε. Intuitively, the modes of RVDE are distributed
geometrically according to the truncated Gabriel graph.

This suggests a possible heuristic procedure for hyperparameter selection of α.
An option is to consider statistics of lengths of edges in the Gabriel graph and
choose 2ε (and thus α) as a percentile. The percentile we suggest is |P |−1

|E| where
E denotes the set of edges of the Gabriel graph. The intuition is that we wish to
avoid modes distributed in cycles. The number of cycles in the Gabriel graph is
|P | − |E| + 1, from which our suggested percentile follows. This procedure enables
to select α automatically and we evaluate it empirically in Section C.5. However,
it comes with a number of limitations. First, the computational complexity of such
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Figure C.4: Illustration of the modes of RVDE (red) together with the Gabriel graph
(black).

a procedure is O(|P |3) because of the construction of the Gabriel graph, which is
feasible but might become expensive for large datasets. Another limitation is its
independence from the kernel K. The selection of α might be satisfying for some
kernels but not for others. In our empirical evaluation from Section C.5 we show
that for the rational kernel the selected α is close to the optimal one in practice,
while for the exponential kernel the selection is further from optimality.

C.5 Experiments

Our empirical investigation is organized as follows. First we study RVDE on its
own by comparing the different choices of the kernel. We then compare RVDE with
other non-parametric density estimators on a variety of datasets.

C.5.1 Evaluation Metrics and Baselines

We evaluate all the density estimators fP via average log-likelihood on a test set
Ptest i.e.,

1
|Ptest|

∑
x∈Ptest

log fP (x). (C.15)

This measures whether the estimator assigns high density values to points outside
of P but sampled from the same distribution. In order to empirically evaluate
the computational complexity, we additionally include runtimes for all the exper-
iments. Our implementations of all the considered density estimators share the
same programming framework and are parallelized to a similar degree, making the
raw runtimes a fair comparison. We perform experiments on a machine with an
AMD Ryzen 9 5950X 16-core CPU and a GeForce RTX 3090 GPU.
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We deploy the following non-parametric density estimators as baselines in the
experiments.

Kernel Density Estimator (KDE): given a (normalized) kernel K : Rn → R≥0
the density is estimated as:

fP (x) = 1
|P |hn

∑
p∈P

K

(
x− p

h

)
(C.16)

where h is the bandwidth hyperparameter.

Adaptive Kernel Density Estimator (AdaKDE; [18]): a version of KDE where
the bandwidth hp depends on p ∈ P and is smaller when data is denser around p.
Specifically, if fP (p) denotes the standard KDE estimate with a global bandwidth
h then hp = hλp, where:

λp = (g/fP (p)) 1
2 , g =

∏
q∈P

fP (q)
1

|P | . (C.17)

Compactified Voronoi Density Estimator (CVDE; [9]): the VDE described
at the end of Section C.3. It depends on a kernel K (together with a bandwidth)
and is discontinuous on the boundary of Voronoi cells.

C.5.2 Datasets
In our experiments we consider data of varying nature. This includes both simple
synthetic distributions and real-world datasets in high dimensions. For the latter,
we consider sound data (n = 21) and image data (n = 100). Our datasets are the
following.

Synthetic Datasets: datasets generated from a number of simple densities in
n = 10 dimensions. Both P and Ptest contain 1000 points in all the cases. The
densities we consider are: a standard Gaussian distribution, a standard Laplace
distribution, a Dirichlet distribution with parameters αi = 1

n+1 and a mixture of
two Gaussians with means µ1 = (−0.5, 0, · · · , 0), µ2 = (0.5, 0, · · · , 0) and standard
deviations σ1 = 0.1, σ2 = 10 respectively.

MNIST [33]: a dataset consisting of 28×28 grayscale images of handwritten digits
which are normalized in order to lie in [0, 1]28×28. In order to densify the data and
obtain more meaningful estimates, we downscale the images to resolution 10 × 10.
For each experimental run, we sample half of the 60000 training datapoints in order
to evaluate the variance of the estimation. The test set size is 10000.

Anuran Calls [34]: a dataset consisting of 7195 calls from 10 species of frogs which
are represented by 21 normalized mel-frequency cepstral coefficients in [0, 1]21. We
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Gaussian Laplace

Dirichlet

Figure C.5: Comparison of the two kernels for RVDE (Equation C.8) on three simple
distributions in 10 dimensions.

retain 10% of data for testing and sample half of the training data at each experi-
mental run.

C.5.3 Comparison of Kernels

Our first experiment consists of a comparison between the rational and the expo-
nential kernel for RVDE (Equation C.8) on the synthetic datasets. In what follows
the exponent k for the rational kernel is set to k = n+ 1 for simplicity, where n is
the dimension of the ambient space of the dataset considered (in this experiment,
n = 10).

The results are presented in Figure C.5. The plot displays the test log-likelihood
(Equation C.15) as the hyperparameter α varies. The latter is scaled as α 1

n in order
to be consistent with the visualizations in the following section. The curves on the
plot represent mean and standard deviation (shaded areas) over 5 experimental
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Single Gaussian Gaussian Mixture

Anuran Calls MNIST

Figure C.6: Comparison of the estimators as the bandwidth varies. All the estimators
implement the rational kernel.

runs for 100 bandwidths. The additional vertical lines correspond to the value
of the hyperparameter selection heuristic discussed at the end of Section C.4.3.
As can be seen, the performance of the rational kernel is more stable w.r.t. the
hyperparameter α. The exponential kernel, however, achieves a slightly higher test
score with its best hyperparameter on the Gaussian and Laplace datasets. Note
that the heuristically chosen α aligns well with the one that achieves the best
performance for the rational kernel, but is misaligned for the exponential one. We
conclude that the rational kernel is generally a better option unless an extensive
hyperparameter search is performed. In what follows we consequently stick to the
rational kernel for RVDE.

C.5.4 Comparison with Baselines

In our main experiment we compare the performance of RVDE with the baselines
described in Section C.5.1. We consider the test log-likelihood (Equation C.5.1), the
standard deviation of the latter and the runtimes. In order to make the comparison
as fair as possible, all the estimators are implemented with the rational kernel. We
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found out that the performances drop with the more standard Gaussian kernel
(which does not apply to RVDE). We include the results with both the Gaussian
kernel and the exponential kernel in the Appendix.

Table C.1: Average runtimes (in seconds) per one full train-test run with fixed band-
width. RVDE is highlighted in blue.

RVDE CVDE KDE AdaKDE

Gaussian 0.0376 0.265 0.0340 0.266
Anuran Calls 0.0581 0.490 0.0787 0.870

MNIST 17.4 408 12.5 75.0

The plot in Figure C.6 displays the (test) log-likelihood for all the estimators as
the bandwidth hyperparameter h varies (see the definition of the baselines in Section
C.5.1). In order to compare RVDE on the same scale as the other estimators, we
convert h to α via:

α =
∫ ∞

0
K

(
t

h

)
dt = hn

∫ ∞

0
K(t) dt. (C.18)

As can be seen, RVDE outperforms the baselines (each with its respective best band-
width) in all the cases considered. The margin between RVDE and the baselines
is especially evident on the more complex and high-dimensional datasets (Anuran
Calls and MNIST). This confirms that the geometric benefits and the continuity
properties of RVDE translate into better estimates for densities of different nature
and increasing dimensionality.

Table C.1 reports the average runtime for an experimental run (with a single
fixed bandwidth) for each estimator. RVDE outperforms the CVDE as well as
AdaKDE by an extremely large margin. KDE achieves comparable runtimes to
RVDE: it is slightly faster on Gaussian and MNIST while it is slightly slower on
Anuran Calls. This confirms empirically the discussion from Section C.4.2: RVDE
is significantly more efficient than CVDE and has the same (asymptotic) complexity
as KDE.

Table C.2 separately reports the standard deviation of the log-likelihood (aver-
aged over Ptest) w.r.t. the dataset sampling. For each estimator, we consider its
best bandwidth according to the results from Figure C.6. We first observe that



C16 PAPER C. AN IMPROVED VORONOI DENSITY ESTIMATOR

Table C.2: Standard deviations of the (test) log-likelihood over 5 experimental runs.
RVDE is highlighted in blue. Each estimator is considered with its best bandwidth.

RVDE CVDE KDE AdaKDE

Gaussian 0.788 0.843 0.572 0.572
Anuran Calls 1.170 1.253 1.152 1.152

MNIST 5.507 5.767 5.735 5.735

RVDE achieves lower standard deviation than CVDE on all the datasets. This
corroborates the hypothesis that the continuity of RVDE results in more stable es-
timates than those obtained by the highly-discontinuous CVDE. KDE and AdaKDE
achieve the lowest standard deviations on the Gaussian and Anuran Calls datasets.
This is likely due to the smoothness of such estimators and again confirms the
benefit of regularity biases in terms of stability. However, on the most complex
dataset considered (MNIST) RVDE outperforms the baselines. This suggests that
for articulated densities the biases of geometric nature become more beneficial than
generic biases such as smoothness.

C.6 Conclusions and Future Work

In this work we introduced a non-parametric density estimator (RVDE) benefiting
from the geometric properties of Voronoi tessellations while being continuous and
computationally efficient. We provided both theoretical and empirical investiga-
tions of RVDE.

An interesting line for future investigation is to explore the radial construction
of RVDE on Riemannian manifolds beyond the Euclidean space. In this generality
the rays correspond to geodesics defined via the exponential map of the given man-
ifold. A variety of Riemannian manifolds arise in statistics and machine learning.
For example, data on spheres are the object of study of directional statistics [35],
hyperbolic spaces are routinely deployed to represent hierarchical data [36] and
complex projective spaces correspond to Kendall shape spaces from computer vi-
sion [37]. Those areas of research can potentially benefit from the geometric charac-
teristics and the computational efficiency of an extension of RVDE to Riemannian
manifolds.
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C.8 Appendix

C.8.1 Proofs of Results from Section C.4.3

Proposition C.8.1. Fix l > 0 and suppose K ∈ C1(R>A). Then the iteration
βm+1 of the Newton-Raphson method for computing β(l) by solving Equation C.7
takes form:

βm+1 = βm

(
1 + 1

n

(
1 − lnK(βml) − nα

lnK(βml) − n
∫ l

0 t
n−1K(βmt) dt

))
. (C.19)

Moreover, if K is convex then the Newton-Raphson method converges for any initial
value β0 i.e., limm→∞ βm = β(l).

Proof. Consider

F (β) =
∫ l

0
tn−1K(βt) dt− α. (C.20)

The iteration of the Newton-Rhapson method for solving F (β) = 0 takes form:

βm+1 = βm − F (βm)
dF
dβ (βm)

. (C.21)

Via integration by parts we obtain:

dF
dβ (β) =

∫ l

0
tn

dK
dt (βt) dt = 1

β

(
lnK(βl) − n

∫ l

0
tn−1K(βt) dt

)
. (C.22)

Equation C.19 follows then from Equation C.21 by elementary algebraic manipu-
lations. The convergence guarantee follows from the fact that if K is convex then
F is easily seen to be convex as well. The Newton-Raphson method is well-known
to be convergent for convex functions ( [38]).

Proposition C.8.2. The function β : R>0 → R is increasing, has a zero at
l = (nα) 1

n and has an horizontal asymptote:

lim
l→+∞

β(l) =
(

1
α

∫ ∞

0
tn−1K(t) dt

) 1
n

. (C.23)

Moreover if K ∈ C1(R>A) then β ∈ C1(R>0) and it satisfies the differential equa-
tion: (

l − nα

ln−1K(β(l)l)

)
dβ
dl (l) = −β(l). (C.24)



C18 PAPER C. AN IMPROVED VORONOI DENSITY ESTIMATOR

Proof. The claim on the monotonicity of β follows directly from its definition (Equa-
tion C.7) and the hypothesis that K is decreasing. In order to compute its zero,
note that β(l) = 0 implies α =

∫ l

0 K(0)tn−1 = ln

n and thus l = (nα) 1
n . For the

asymptote note that for l = +∞ Equation C.7 becomes by a change of variables:∫ ∞

0
tn−1K(β(+∞)t) dt = 1

β(+∞)n

∫ ∞

0
tn−1K(t) dt = α. (C.25)

Lastly, in order to obtain the differential equation for β we differentiate Equation
C.7 on both sides and get:

0 = d
dl

∫ l

0
tn−1K(β(l)t) dt = ln−1K(β(l)l) +

∫ l

0
tn−1 d

dlK(β(l)t) dt

= ln−1K(β(l)l) + dβ
dl (l)

∫ l

0
tn

dK
dt (β(l)t) dt

= ln−1K(β(l)l) + dβ
dl (l) l

nK(β(l)l) − nα

β(l)

(C.26)

where in the first identity we deployed the (distributional) Leibniz rule while in the
last one we deployed integration by parts.

Proposition C.8.3. The modes of fP are as follows:

(1) p ∈ P if d(p, q) > 2ε for every Voronoi cell C(q) adjacent to C(p),

(2) p+q
2 for p, q ∈ P if p+q

2 ∈ C(p) ∩ C(q) and d(p, q) < 2ε,

(3) all points belonging to the segment [p, q] for p, q ∈ P if p+q
2 ∈ C(p)∩C(q) and

d(p, q) = 2ε.

Proof. Pick p ∈ P . If p satisfies the hypothesis of the first claim then l(x) > ε for
every x ∈ C(p) and thus β(l(x)) > 0 by Proposition C.8.2. Since K is decreasing,
fP decreases radially w.r.t. p in C(p) and the first claim follows. If p does not
satisfy the hypothesis of the first claim then β(l(x)) ≤ 0 for some x ∈ C(p). With
the exception of the case β(l) = 0, the modes lie then on the boundary and are of
the form K(β(l)l) up to a multiplicative constant. The function β(l)l is increasing
in l since by appealing to Proposition C.8.2 we can compute its derivative:

dβ(l)l
dl = β(l) + l

dβ(l)
dl = β(l) nα

nα− lnK(β(l)l) ≥ 0. (C.27)

Since l(x) has local minima at midpoints of segments connecting points in P ,
K(β(l)l) is locally maximized therein and the second claim follows. In the hypoth-
esis of the third claim β vanishes on the segment and the density is thus constant.
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C.8.2 Additional Experiments
In this section we report additional experimental results complementing the ones in
the main of the manuscript. For completeness, we evaluate the density estimators
on different kernels. Figure C.7 displays comparative results for all the estimators
with the exponential and the Gaussian kernel (note that the latter does not apply to
RVDE). Moreover, we experiment with different dimensions and evaluation metrics
other than average log-likelihood. This is possible only on a synthetic dataset where
the dimension can vary and where the ground-truth density ρ is known. The latter
is necessary for the metric considered. Figure C.8 displays a comparison on a high-
dimensional Gaussian mixture (n = 30) as well as a comparison on the Gaussian
mixture as in Section C.5 (n = 10) where the evaluation metric is the empirical
Hellinger distance on the test set:

1
2|Ptest|

∑
x∈Ptest

(
fP (x) 1

2 − ρ(x) 1
2

)2
. (C.28)
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Figure C.7: Comparison of the estimators with the exponential and Gaussian kernel as
the bandwidth varies.

n = 30 Hellinger Distance

Figure C.8: Comparison of the estimators on a 30-dimensional Gaussian mixture (left)
and on a 10-dimensional Gaussian mixture with the Hellinger distance as a metric (right).
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Learning via Class-Pose

Decomposition
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Danica Kragic

Abstract

We introduce a general method for learning representations that are equiv-
ariant to symmetries of data. Our central idea is to decompose the latent
space into an invariant factor and the symmetry group itself. The compo-
nents semantically correspond to intrinsic data classes and poses respectively.
The learner is trained on a loss encouraging equivariance based on super-
vision from relative symmetry information. The approach is motivated by
theoretical results from group theory and guarantees representations that are
lossless, interpretable and disentangled. We provide an empirical investiga-
tion via experiments involving datasets with a variety of symmetries. Results
show that our representations capture the geometry of data and outperform
other equivariant representation learning frameworks.

D.1 Introduction

For an intelligent agent aiming to understand the world and to operate therein, it is
crucial to construct rich representations reflecting the intrinsic structures of the per-
ceived data [1]. A variety of self-supervised approaches have been proposed to ad-
dress the problem of representation learning such as (variational) auto-encoders [2,3]
and contrastive learning methods [4,5]. These approaches are applicable to a wide
range of scenarios due to their generality but often fail to capture fundamental

D1
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Figure D.1: An illustration of our equivariant representation decomposing intrinsic class
and pose of data.

aspects hidden in data. For example, it has been recently shown that disentangling
intrinsic factors of variation requires specific biases or some form of supervision [6].
This raises the need for representation learning paradigms leveraging upon specific
structures carried by data.

A fundamental geometric structure of datasets consists of their symmetries [7].
Such structure arises in several practical scenarios. Consider for example images
depicting rigid objects in different poses. In this case the symmetries are rigid
transformations (translations and rotations) that act on datapoints by transform-
ing the pose of the depicted object. Symmetries not only capture the geometry of
the pose but additionally preserve the object’s shape, partitioning the dataset into
intrinsic invariant classes. The joint information of shape and pose describes the
data completely and is recoverable from the symmetry structure alone. Another
example of symmetries arises in the context of an agent exploring an environment.
Actions performed by a mobile robot can be interpreted as changes of frame i.e.,
symmetries transforming the data the agent perceives (see Figure D.2). Assum-
ing the agent is capable of odometry (measurement of its own movement), such
symmetries are collectable and available for learning. All this motivates the design
of representations that rely on symmetries and behave coherently with respect to
them – a property known as equivariance [8, 9].

In this work we introduce a general framework for equivariant representation
learning. Our central idea is to encode class and pose separately by decomposing
the latent space into an invariant factor E and a symmetry component G (see Figure
D.1). The pose component G extracts geometry from data while the class compo-
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Figure D.2: Actions performed by a mobile agent can be seen as symmetries of the
perceived data.

nent is interpretable and necessary for a lossless representation. We then train a
representation learner φ : X → E × G via a loss encouraging equivariance relying
on supervision from relative symmetries between datapoints. Our methodology is
based on a theoretical result guaranteeing that under mild assumptions an ideal
learner achieves isomorphic representations by being trained on equivariance alone.
Another advantage of our framework in the presence of multiple symmetry factors
is that each of them can be varied independently by acting on the pose component.
This realizes disentanglement in the sense of [9] which, as mentioned, would not be
possible without the information carried by symmetries.

We rely on the abstract language of (Lie) group theory in order to formalize
symmetries and equivariance. As a consequence, our framework is general and ap-
plicable to arbitrary groups of symmetries and to data of arbitrary nature. This
is in contrast with previous works on equivariance often focusing on specific sce-
narios. For example, a number of works focus on Euclidean representations and
linear or affine symmetry groups [10–12] while others enforce equivariance via group
convolutions [13, 14]. The latter are only applicable when data consists of signals
over a base space P (e.g., a pixel plane or a voxel grid) and symmetries are in-
duced by the ones of P , which is limiting and does not lead to interpretable and
structured representations. On the other hand, some recently introduced frame-
works aim to jointly learn the equivariant representation together with the latent
dynamics/symmetries [15, 16]. Although this has the advantage that the group of
symmetries is not assumed to be known a priori, the obtained representation is
again unstructured, uninterpretable, and comes with no theoretical guarantees.

We empirically investigate our framework on image datasets with a variety of
symmetries including translations, dilations and rotations. We moreover provide
both qualitative and quantitative comparisons with competing equivariant repre-
sentation learning frameworks. Results show that our representations exhibit more
structure and outperform the baselines in terms of latent symmetry prediction.
Moreover, we show how the preservation of geometry of our framework can be ap-
plied to a mapping task: for data collected by a mobile agent our representation
can be used to extract maps of multiple environments simultaneously. We provide
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a Python implementation together with data and code for all the experiments at a
publicly available repository 1. In summary, our contributions include:

• A method for learning equivariant representations separating intrinsic data
classes from poses.

• A general mathematical formalism based on group theory, which ideally guar-
antees lossless and disentangled representations.

• An empirical investigation via a set of experiments involving various group
actions, together with applications to scene mapping through visual data.

D.2 The Mathematics of Symmetries

We now introduce the necessary mathematical background on symmetries and
equivariance. The modern axiomatization of symmetries relies on their algebraic
structure i.e., composition and inversion. The properties of those operations are
captured by the abstract concept of a group [17].

Definition D.2.1. A group is a set G equipped with a composition map G×G → G
denoted by (g, h) 7→ gh, an inversion map G → G denoted by g 7→ g−1, and a
distinguished identity element 1 ∈ G such that for all g, h, k ∈ G:

Associativity Inversion Identity
g(hk) = (gh)k g−1g = gg−1 = 1 g1 = 1g = g

Examples of groups include the permutations of a set and the general linear
group GL(n) of n× n invertible real matrices, both equipped with usual composi-
tion and inversion of functions. An interesting subgroup of the latter is the special
orthogonal group SO(n) = {A ∈ GL(n) | AAT = 1, det(A) = 1}, which consists
of linear orientation-preserving isometries of the Euclidean space. An example of a
commutative group (i.e., such that gh = hg for all g, h ∈ G) is Rn equipped with
vector sum as composition.

The idea of a space X having G as a group of symmetries is abstracted by the
notion of group action.

Definition D.2.2. An action by a group G on a set X is a map G × X → X
denoted by (g, x) 7→ g · x, satisfying for all g, h ∈ G, x ∈ X :

Associativity Identity
g · (h · x) = (gh) · x 1 · x = x

1https://github.com/equivariant-ml/equivariant-representation-learning

https://github.com/equivariant-ml/equivariant-representation-learning
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Figure D.3: Orbits of a (free) group action represent intrinsic classes of data. Each orbit
is isomorphic to the symmetry group G itself.

In general, the following actions can be defined for arbitrary groups: G acts on
any set trivially by g · x = x, and G acts on itself seen as a set via (left) multipli-
cation by g · h = gh. A further example of group action is GL(n) acting on Rn by
matrix multiplication.

Maps which preserve symmetries are called equivariant and will constitute the
fundamental notion of our representation learning framework.

Definition D.2.3. A map φ : X → Z between sets acted upon by G is called
equivariant if φ(g · x) = g · φ(x) for all g ∈ G, x ∈ X . It is called invariant
if moreover G acts trivially on Z or, explicitly, if φ(g · x) = φ(x). It is called
isomorphism if it is bijective.

Now, group actions induce classes in X called orbits by identifying points related
by a symmetry.

Definition D.2.4. Consider the equivalence relation on X given by deeming x and
y equivalent if y = g · x for some g ∈ G. The induced equivalence classes are called
orbits, and the set of orbits is denoted by X/G.

For example the orbits of the trivial action are singletons, while the multi-
plication action has a single orbit. Data-theoretically, an orbit may be seen as
an invariant, maximal class of data induced by the symmetry structure. In the
example of rigid objects acted upon by translations and rotations, orbits indeed
correspond to shapes (see Figure D.3).

It is intuitive to assume that a nontrivial symmetry g ̸= 1 ∈ G has to produce
a change in data. If no difference is perceived, one might indeed consider the given
transformation as trivial. We can thus assume that no point in X is fixed by an
element of G different from the identity or, in other words, g ·x ̸= x for g ̸= 1. Such
actions are deemed as free and will be the ones relevant to the present work.
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Assumption D.2.1. The action by G on X is free.

The following is the core theoretical result motivating our representation learn-
ing framework, which we will discuss in the following section. The result guarantees
a general decomposition into a trivial and a multiplicative action and describes all
the equivariant isomorphisms of such a decomposition.

Proposition D.2.2. The following holds:

• There is an equivariant isomorphism

X ≃ (X/G) ×G (D.1)

where G acts trivially on the orbits and via multiplication on itself, i.e., g ·
(e, h) = (e, gh) for g, h ∈ G, e ∈ X/G. In other words, each orbit can be
identified equivariantly with the group itself.

• Any equivariant map φ : (X/G) ×G → (X/G) ×G is a right multiplication
on each orbit i.e., for each orbit O ∈ X/G there is an hO ∈ G such that
φ(O, g) = (O′, ghO) for all g ∈ G. In particular, if φ induces a bijection on
orbits then it is an isomorphism.

We refer to the Appendix for a proof. The first part of the statement can be
interpreted in plain words as a decomposition of classes from poses for any free
group action. According to this terminology, a pose is abstractly an element of an
arbitrary group G while a class is an orbit. The intuition behind the second part
of the statement is that any equivariant map performs an orbit-dependent ‘change
of frame’ in the sense that elements of an orbit O get composed on the right by a
symmetry hO depending on O. This will imply that our representations can differ
from ground-truth ones only by such change of frames and will in fact guarantee
isomorphic representations for our framework.

D.3 Method

D.3.1 General Equivariant Representation Learning
In the context of representation learning the goal of the model is to learn a map
deemed ‘representation’ φ : X → Z from the data space X to a latent space. The
learner optimizes a loss L : M → R over parameters θ ∈ M of the map φ = φθ.
The so-obtained representation can be deployed in downstream applications for an
improved performance with respect to operating in the original data space.

The central assumption of equivariant representation learning is that data car-
ries symmetries which the representation has to preserve. As discussed in Section
D.2, this means that a group of symmetries G acts on both X and Z and that the
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representation φ is encouraged to be equivariant via the loss. While the action on
Z is designed as part of the model, the action on X is unknown in general and has
to be conveyed by data. Concretely, the dataset consists of triples (x, g, y) with
x ∈ X , g ∈ G and y = g · x. The group element g carries symmetry information
which is relative between x and y. Equivariance is then naturally encouraged via a
loss in the form:

L(θ;x, g, y) = d (φθ(y), g · φθ(x)) . (D.2)

Here d : Z × Z → R≥0 is a similarity function on Z. Generally speaking, d does
not necessarily need to satisfy the axioms for a distance but we at least require it
to be positive definite i.e., d(z, z′) = 0 iff z = z′. Note that we assume the group
together with its algebraic structure to be known a priori and not inferred during
the learning process. Its action over the latent space is defined in advance and
constitutes the primary inductive bias for equivariant representation learning.

D.3.2 Learning to Decompose Class and Pose

Motivated by Proposition D.2.2, we propose to set the latent space as:

Z = E︸︷︷︸
Class

× G︸︷︷︸
P ose

(D.3)

with G acting trivially on E and via multiplication on itself. Here, E is any set
which is meant to represent classes of the encoded data. Since there is in general
no prior information about the action by symmetries on X and its orbits, E has to
be set beforehand. Assuming E has enough capacity to contain X/G, Proposition
D.2.2 shows that an isomorphic equivariant data representation is possible in Z.
By fixing (positive definite) similarity functions dE and dG on E and G respectively,
we obtain a joint latent similarity function d(z, z′) = dE(zE , z

′
E)+dG(zG, z

′
G), where

the subscripts denote the corresponding components. When G ⊆ GL(n) is a group
of matrices, a typical choice for dG is the (squared) Frobenius distance i.e., the
Euclidean distance for matrices seen as flattened vectors. The equivariance loss
L(θ;x, g, y) in Equation D.2 then reads:

dE
(
φE(y), φE(x)

)︸ ︷︷ ︸
Invariant

+ dG

(
φG(y), gφG(x)

)
.︸ ︷︷ ︸

Multiplication−Equivariant

(D.4)

Here we denoted the components of the representation map by φ = (φE , φG)
and omitted the parameter θ for simplicity. To spell things out, φE encourages data
from the same orbit to lie close in E (i.e., φE is ideally invariant) while φG aims for
equivariance with respect to multiplication on the pose component G.

If φE is injective then Proposition D.2.2 guarantees lossless (i.e., isomorphic)
representations, which we summarize in the following corollary:
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Corollary D.3.1. Suppose that φE is injective. Then L(θ;x, g, y) = 0 for all
x, g, y = g · x if and only if φθ is an equivariant isomorphism on its image.

In order to force injectivity, we propose a typical solution from contrastive learn-
ing literature [4] encouraging latent points to spread apart. To this end, we opt for
the standard InfoNCE loss ( [18]), although other choices are possible. This means
that we replace the term dE

(
φE(y), φE(x)

)
in Equation D.4 with

1
τ
dE
(
φE(y), φE(x)

)
+ logEx′

[
e− 1

τ dE(φE (x′), φE (x))
]
. (D.5)

The hyperparameter τ ∈ R>0 (‘temperature’) controls the amount of latent en-
tropy. Following [4,18], we set the class component as a sphere E = Sm by normal-
izing the output of φE . This allows to deploy the cosine dissimilarity dE(z, z′) =
−cos(∠zz′) = −z · z′ and is known to lead to improved performances due to the
compactness of E [19].

D.3.3 Parametrizing via the Exponential Map

The output space of usual machine learning models such as deep neural networks
is Euclidean. Our latent space (Equation D.3) contains G as a factor, which might
be non-Euclidean as in the case of G = SO(n). In order to implement our repre-
sentation learner φ it is thus necessary to parametrize the group G. To this end,
we assume that G is a differentiable manifold (with differentiable composition and
inversion maps) i.e., that G is a Lie group. One can then define the Lie algebra g
of G as the tangent space to G at 1.

We propose to rely on the exponential map g → G, denoted by v 7→ ev, to
parametrize G. This means that φ outputs an element v of g that gets mapped
into G as ev. Although the exponential map can be defined for general Lie groups
by solving an appropriate ordinary differential equation, we focus on the case G ⊆
GL(n). The Lie algebra g is then contained in the space of n× n matrices and the
exponential map amounts to the matrix Taylor expansion ev =

∑
k≥0 v

k/k!. For
specific groups the latter can be simplified via simple closed formulas. For example,
the exponential map of Rn is the identity while for SO(3) it can be efficiently
computed via the Rodrigues’ formula [20].

D.3.4 Relation to Disentanglement

Our equivariant representation learning framework is related to the popular notion
of disentanglement [1,21]. Intuitively, in a disentangled representation a variation of
a distinguished aspect in the data is reflected by a change of a single component in
the latent space. Although there is no common agreement on a rigorous formulation
of the notion [6], a proposal has been addressed in [9]. The presence of multiple
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dynamic aspects in the data is formalized as an action on X by a decomposed group

G = G1 × · · · ×Gn (D.6)

where each of the factors Gi is responsible for the variation of a single aspect. A
representation φ : X → Z is then defined to be disentangled if (i) there is a de-
composition Z = Z1 × · · · × Zn where each Zi is acted upon trivially by the factors
Gj with j ̸= i and (ii) φ is equivariant.

Our latent space (Equation D.3) automatically yields to disentanglement in this
sense. Indeed, in the case of a group as in Equation D.6 we set Zi = Gi. In order
to deal with the remaining factor Z0 = E , a copy of the trivial group G0 = {1} can
be added to G without altering it up to isomorphism. The group G ≃ G0 ×· · ·×Gn

acts on Z = E × G = Z0 × · · · × Zn as required for a disentangled latent space.
In conclusion, our work fits in the line of research aiming to infer disentangled
representation via indirect and weak forms of supervision [22], of which symmetry
structures are an example.

D.4 Related Work

Equivariant Representation Learning. Models relying on symmetry and equiv-
ariance have been studied in the context of representation learning. These models
are typically trained on variations of the equivariance loss (Equation D.2) and are
designed for specific groups G and actions on the latent space Z. The pioneering
Transforming Autoencoders [23] learn to represent image data translated by G = R2

in the pixel plane, with Z consisting of several copies of G (‘capsules’) acting on
itself. Although such models are capable of learning isomorphic representations,
the orbits are not explicitly modeled in the latent space. In contrast, our invariant
component E is an interpretable alternative to multiple capsules making orbits re-
coverable from the representation. A series of other works represent data in a latent
space modelled via the group of symmetries G [24–26]. These works however either
do not reserve additional components dedicated to orbits, obtaining a representa-
tion that forgets the intrinsic classes of data, or address specific groups i.e., SO(3),
the torus SO(2)×SO(2) and product of cyclic groups respectively. Affine Equivari-
ant Autoencoders [10] deal with affine transformations of the pixel-plane (shearing
an image, for example) and implement a latent action through a hand-crafted map
t : G → Z = Rn. Groups of rotations SO(n) linearly acting on a Euclidean latent
space Z = Rn are explored in [11, 12]. Since rotating a vector around itself has no
effect, linear actions are not free (for n ≥ 3), which makes isomorphic representa-
tions impossible. Equivariant Neural Rendering [27] proposes a latent voxel grid on
which SO(3) acts approximately by rotating and interpolating values. In contrast,
our latent group action is exact and thus induces no loss of information. We provide
an empirical comparison to both linear Euclidean actions and Equivariant Neural
Rendering in Section D.5. Lastly, [28] have recently proposed to learn equivariant
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representations by splitting the latent space into an invariant component and an
equivariant one, which bears similarity to our framework. Differently from us, how-
ever, the model is trained via an equivariance loss in the data space X and thus
requires the group actions over data to be known a priori. As previously discussed,
this is limiting and often unrealistic in practice.

Convolutional Networks. Convolutional layers in neural networks [13, 14] sat-
isfy equivariance a priori with respect to transformations of the pixel plane. They
were originally introduced for (discretized) translations and later extended to more
general groups [29–31]. However, they require data and group actions in a spe-
cific form. Abstractly speaking, data need to consist of vector fields over a base
space (images seen as RGB fields over the pixel plane, for example) acted upon
by G, which does not hold in general. Examples of symmetries not in this form
are changes in perspective of first-person images of a scene and rotations of rigid
objects on an image. Our model is instead applicable to arbitrary (Lie) group
actions and infers equivariance in a data-driven manner. Moreover, equivariance
through G-convolutions alone is hardly suitable for representation learning as the
output dimension coincides with the input one. Dimensionality reduction tech-
niques deployed together with convolutions such as max-pooling or fully-connected
layers disrupt equivariance completely. The latent space in our framework is in-
stead compressed and is ideally isomorphic to the data space X (Proposition D.2.2).

World Models. Analogously to group actions, Markov Decision Processes (MDPs)
from reinforcement learning and control theory involve a possibly stochastic inter-
action A × X → X with an environment X via a set A of moves. In general,
no algebraic structure (such as a group composition) is assumed on A. In this
context, a representation equivariant with respect to the action is referred to as
World Model [15,32,33] or Markov Decision Process Homomorphism (MDPH) [16].
MDPHs are usually deployed as pre-trained representations for downstream tasks
or trained jointly with the agent for exploration purposes [34]. However, the latent
action A × Z → Z of an MDPH is learned since no prior knowledge is assumed
around A or the environment. This implies that the resulting representation is un-
structured and uninterpretable. We instead assume that G = A is a group acting
(freely) on X , which enables us to define a geometrically-structured and disen-
tangled latent space that guarantees isomorphic equivariant representations. We
provide an empirical comparison to MDPHs in Section D.5.

D.5 Experiments

D.5.1 Dataset Description

Our empirical investigation aims to assess our framework via both qualitative and
quantitative analysis on datasets with a variety of symmetries. To this end we
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deploy five datasets summarized in Table D.1: three with translational symme-
try extracted from dSprites and 3DShapes [35, 36], one with rotational symmetry
extracted from ShapeNet [37] and one simulating a mobile agent exploring apart-
ments and collecting first-person views. The latter is extracted from Gibson [38]
and generated via the Habitat simulator [39]. Datapoints are triples (x, g, y) where
x, y are 64 × 64 images, g ∈ G and y = g · x. We refer to the Appendix for a more
detailed description of the datasets.

D.5.2 Baselines and Implementation Details

We compare our method with the following models designed for learning equivari-
ant representations:

MDP Homomorphisms (MDPH) from [15, 16]: a framework where the repre-
sentation φ : X → Z is learnt jointly with the latent action T : G× Z → Z. The
two models are trained with the equivariance loss Ex,g,y=g·x[d(φ(y), T (g, φ(x)))]
(cf. Equation D.2). In order to avoid trivial solutions, an additional ‘hinge’ loss
term Ex,x′ [max{0, 1 − d(x, x′)}] is optimized that encourages encodings to spread
apart in the latent space. This is analogous to (the denominator of) the InfoNCE
loss (Equation D.5) which we rely upon to avoid orbit collapse in E . Differently
from us, an MDPH does not assume any prior knowledge on G nor any algebraic
structure on the latter. However, this comes at the cost of training an additional
model T and losing the structures and guarantees provided by our framework.

Linear: a model with Z = R3 on which SO(3) acts by matrix multiplication. Such
a latent space has been employed in previous works [11, 12]. The model is trained
with the same loss as MDPH i.e., equivariance loss together with the additional
hinge term avoiding collapses such as φ = 0. Note that the action on Z is no
longer free (even away from 0) since rotating a vector around itself has no effect.
Differently from our method, the model is thus forced to lose information in order
to learn an equivariant representation.

Equivariant Neural Renderer (ENR) from [27]: a model with a tensorial latent
space Z = RC×D×H×W , thought as a copy of RC for each point in a D × H × W
grid in R3. The group SO(3) approximately acts on Z by rotating the grid and
interpolating the obtained values in RC . The model is trained trained jointly with
a decoder ψ : Z → X and optimizes variation of the equivariance loss incorpo-
rating reconstruction: Ex,g,y=g·x[dX (y, ψ(g · φ(x)))]. We set dX as the standard
binary cross-entropy metric for (normalized) images. Although the action on Z is
free, the latent discretisation and consequent interpolation make the model only
approximately equivariant.

We implement the equivariant representation learner φ as a ResNet-18 [40],
which is a deep convolutional neural network with residual connections. We train
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Figure D.4: Left: visualization of encodings through φ from the Sprites, Chairs and
Apartments datasets. The images display the projection to the annotated components of
Z and data are colored by their ground-truth class. Each latent orbit from Apartments is
compared to the view from the top of the corresponding scene. Right: same visualization
for the baseline models MDPH and Linear on the Chairs dataset.

our models for 100 epochs through stochastic gradient descent by means of the
Adam optimizer with learning rate 10−3 and batch size 16. The distance dG is
set as the squared Euclidean one for G = Rn and for G = SO(2) ⊆ R2, while
it is set to the squared Frobenius one for G = SO(3). The invariant component
consists of a sphere E = S7 ⊆ R8 (see Section D.3) parametrized by the normal-
ized output of 8 neurons in the last layer of φ. All the models from Section D.5.2
implement the same architecture (ResNet-18). ENR moreover implements 3D con-
volutional layers around the latent space as suggested in the original work [27].
The latent action model T for MDPH is implemented as a two-layer deep neural
network (128 neurons per layer) with ReLU activation functions. For MDPH we set
dim(Z) = 8+dim(G), which coincides with the output dimensionality of our model.

D.5.3 Visualizations of the Representation

In this section we present visualizations of the latent space of our model (Equation
D.3), showcasing its geometric benefits. The preservation of symmetries coming
from equivariance enables indeed to transfer the intrinsic geometry of data explic-
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itly to the representation. Moreover, the invariant component E separates the orbits
of the group action, allowing to distinguish the intrinsic classes of data in the la-
tent space. Finally, the representation from our model automatically disentangles
factors of the group as discussed in Section D.3.4.

Figure D.4 (left) presents visualizations of encodings through φ for the datasets
Sprites, Chairs and Apartments. For each dataset we display the projection to one
component of E as well as a relevant component of the group G. Specifically, for
Sprites we display the component R2 ⊆ G = R3 corresponding to translations in the
pixel plane, for Chairs we display a circle SO(2) ⊆ G = SO(3) corresponding to one
Euler angle while for Apartments we display the component R2 ⊆ G = R2 × SO(2)
corresponding to translations in the physical world. For Apartments, we addition-
ally compare representation of each of the two apartments with the ground-truth
view from the top.

As can be seen, in all cases the model correctly separates the orbits in E through
self-supervision alone. Since the orbits are isomorphic to the group G itself, the
model moreover preserves the geometry of each orbit separately. For Sprites, this
means that (the displayed component of) each orbit is an isometric copy of the pixel-
plane, with disentangled horizontal and vertical translations. (Figure D.4, top-left).
For Apartments, this similarly means that each orbit exhibits an isometric copy of
the real-world scene. One can recover a map of each of the explored scenes by,
for example, estimating the density of data in Z (Figure D.4, bottom-right) and
further use the model φ to localize the agent within such map. Our equivariant
representation thus solves a localization and mapping task in a self-supervised man-
ner and of multiple scenes simultaneously.

As a qualitative comparison, Figure D.4 (right) includes visualizations for the
models MDPH (trained with dim(Z) = 3) and Linear on the Chairs dataset. As
can be seen, the latent space of MDPH is unstructured: the geometry of X is not
preserved and classes are not separated. This is because the latent action of MDPH
is learned end-to-end and is thus uninterpretable and unconstrained a priori. For
Linear the classes are organized as spheres in Z, which are are the orbits of the
latent action by G = SO(n). Such orbits are not isomorphic to G (one Euler angle
is missing) since the action is not free. This means that Z loses information and
does not represent the dataset faithfully.

D.5.4 Performance Comparison

In this section we numerically compare our method to the equivariant representa-
tion learning frameworks described at the beginning of Section D.5. We evaluate
the models through hit-rate, which is a standard score that allows to compare
equivariant representations with different latent space geometries [15]. Given a test
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Table D.2: Hit-rate (mean and std over 3 runs) on test trajectories of increasing length.

Dataset Model 1 Step 10 Steps 20 Steps

Sprites Ours 1.00±0.00 1.00±0.00 1.00±0.00

MDPH 1.00±0.00 1.00±0.00 0.98±0.02

Shapes Ours 1.00±0.00 1.00±0.00 1.00±0.00

MDPH 1.00±0.00 0.99±0.01 0.96±0.04

Multi-Sprites Ours 1.00±0.00 0.93±0.03 0.93±0.03

MDPH 1.00±0.00 0.28±0.06 0.11±0.01

Chairs

Ours 0.98±0.01 0.94±0.01 0.94±0.01

Linear 0.89±0.08 0.87±0.10 0.87±0.10

MDPH 0.98±0.00 0.88±0.07 0.78±0.13

ENR 0.98±0.00 0.91±0.01 0.82±0.05

Apartments Ours 0.99±0.00 0.99±0.00 0.99±0.00

MDPH 0.98±0.02 0.94±0.03 0.86±0.05

triple (x, g, y = g · x), we say that ‘x hits y’ if φ(y) is the nearest neighbour in Z of
g ·φ(x) among a random batch of encodings {φ(x)}x∈B. For a test set, the hit-rate
is then defined as the number of times x hits y divided by the test set size. We
set the number of aforementioned random encodings to |B| = 32. For each model,
the nearest neighbour is computed with respect to the same latent metric d as the
one used for training. In order to test the performance of the models when acted
upon multiple times in a row, we generate test sets where g is a trajectory i.e., it
is factorized as g = g1g2 · · · gT for T ∈ {1, 10, 20}. Hit-rate is then computed after
sequentially acting by the gi’s in the latent space. This captures the accumulation
of errors in the equivariant representation and thus evaluates the performance for
long-term predictions. All the test sets consist of 10% of the corresponding dataset.

The results are presented in Table D.2. As can be seen, all the models perform
nearly perfectly on single-step predictions with the exception of Linear (89% hit-
rate). For the latter the latent group action is not free, which prevents learning a
lossless equivariant representation and thus degrades the quality of predictions. On
longer trajectories, however, our model outperforms the baselines by an increasing
margin. MDPH accumulates errors due to the lack of structure in its latent space:
its latent action is learned, which does not guarantee stability with respect to com-
position of multiple symmetries. The degradation of performance for MDPH is
particularly evident in the case of Multi-Sprites (11% hit-rate on 20 steps), which
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is probably due to the large number of orbits (27) and the consequent complexity
of the prediction task. Our model is instead robust even in presence of many orbits
(93% hit-rate on Multi-Sprites) due to the dedicated invariant component E in its
latent space.

When the latent space is equipped with a group action, stability on long tra-
jectories follows from associativity of the group composition and the action (see
Definition D.2.1 and D.2.2). This is evident from the results for the Chairs dataset,
where our model and Linear outperform MDPH on longer trajectories (94% and
87% against 78% hit-rate on 20 steps) and exhibit a stable hit-rate as the number of
steps increases. Even though ENR carries a latent group action, it still accumulates
errors (82% hit-rate on 20 steps) due to the discretization of the its latent space
i.e., the latent grid acted upon by SO(3). The consequent interpolation makes the
latent action only approximately associative, causing errors to accumulate on long
trajectories.

D.6 Conclusions, Limitations and Future Work

In this work we addressed the problem of learning equivariant representations by
decomposing the latent space into a group component and an invariant one. We
theoretically showed that our representations are lossless, disentangled and preserve
the geometry of data. We empirically validated our approach on a variety of groups,
compared it to other equivariant representation learning frameworks and discussed
applications to the problem of scene mapping.

Our formalism builds on the assumption that the group of symmetries is known
a priori and not inferred from data. This is viable in applications to robotics, but
can be problematic in other domains. If a data feature is not taken into account
among symmetries, it will formally define distinct orbits. For example, the eventual
change in texture for images of rigid objects has to be part of the symmetries in
order to still maintain shapes as the only intrinsic classes. A framework where the
group structure is learned might be a feasible, although less interpretable alter-
native to prior symmetry knowledge that constitutes an interesting line of future
investigation.
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D.8 Appendix

D.8.1 Proofs of Theoretical Results

Proposition D.8.1. The following holds:

• There is an equivariant isomorphism

X ≃ (X/G) ×G (D.7)

where G acts trivially on the orbits and via multiplication on itself, i.e., g ·
(e, h) = (e, gh) for g, h ∈ G, e ∈ X/G. In other words, each orbit can be
identified equivariantly with the group itself.

• Any equivariant map φ : (X/G) ×G → (X/G) ×G is a right multiplication
on each orbit i.e., for each orbit O ∈ X/G there is an hO ∈ G such that
φ(O, g) = (O′, ghO) for all g ∈ G. In particular, if φ induces a bijection on
orbits then it is an isomorphism.

Proof. We start by proving the first statement. Choose a system of representatives
S ⊆ X for orbits, that is S contains exactly one element for each class. Consider
the map f : (X/G) × G → X given, for s ∈ S and g ∈ G, by f([s], g) = g · s,
where [s] denotes the orbit of s. It is straightforward to check that f is indeed
equivariant. Now if f([s], g) = f([t], h) for s, t ∈ S and g, h ∈ G then g · s = h · t
and s, t are thus in the same orbit, which implies s = t because of uniqueness of
representatives. But then h · s = g · s and, equivalently, g−1h · s = s, from which
we deduce g = h since the action is free. This shows that f is injective. Finally, for
x ∈ X , one can write x = g ·s for the representative s of the orbit of x, which means
that x = f([s], g). That is, f is surjective and thus also bijective, which concludes
the proof of the first statement.

We now prove the second statement. Consider an equivariant map φ : (X/G)×
G → (X/G) × G. For each orbit O ∈ (X/G) denote by hO ∈ G the element such
that φ(O, 1) = (O′, hO). Then by equivariance φ(O, g) = φ(O, g1) = (O′, ghO), as
desired.

D.8.2 Description of Datasets

In our experiments we deploy the following datasets, which are also summarized in
Table D.1:

Sprites: extracted from dSprites [35]. It consists of grayscale images depicting
three sprites (heart, square, ellipse) translating and dilating in the pixel plane. The
group of symmetries is G = R3: a factor R2 translates the sprites in the pixel plane
while the last copy of R, which is isomorphic via exponentiation to R>0 equipped
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with multiplication, acts through dilations. The dataset size is 3 × 104 and there
are three orbits, each corresponding to a sprite.

Shapes: extracted from 3DShapes [36]. It consists of colored images depicting
four objects (cube, cylinder, sphere, pill) on a background divided into wall, floor
and sky. Again, G = R3 but with the action given by color shifting: each of the
factors R acts by changing the color of the corresponding scene component among
object, wall and floor. The dataset size is 4 × 104 and there are four orbits, each
corresponding to a shape.

Multi-Sprites: obtained from Sprites by overlapping images of three colored
sprites (with fixed scale). The group of symmetries is G = R6 = R2 × R2 × R2,
each of whose factors R2 translates one of the three sprites in the pixel plane. The
added colors endow the sprites with an implicit ordering, which is necessary for the
action to be well-defined. The dataset size is 3 × 104. Since the scene is composed
by three possibly repeating sprites, there are 33 = 27 orbits corresponding to the
different configurations.

Chairs: extracted from ShapeNet [37]. It consists of colored images depicting three
types of chair from different angles. The group of symmetries is G = SO(3), which
rotates the depicted chair. The dataset size is 3 × 104 and there are three orbits,
each corresponding to a type of chair.

Apartments: extracted from Gibson [38] and generated via the Habitat simula-
tor [39]. It consists of colored images of first-person renderings of two apartments
(‘Elmira’ and ‘Convoy’). The data simulate the visual perception of an agent such
as a mobile robot exploring the two apartments and collecting images and sym-
metries. The latter belong to the group of two-dimensional orientation-preserving
Euclidean isometries G = R2 × SO(2) and coincide with the possible moves (trans-
lations and rotations) by part of the agent. One can realistically imagine the agent
perceiving the symmetries through some form of odometry i.e., measurement of
movement. Note that the action by G on X is partially defined since g · x is not
always possible because of obstacles. As long as the agent is able to reach any part
of each of the apartments, the latter still coincide with the two orbits of the group
action. The dataset size 2 × 104.

All the datasets consist of triples (x, g, y) where x, y are 64 × 64 images, g ∈ G
and y = g · x.
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Equivariant Representation
Learning in the Presence of

Stabilizers

Luis Armando Pérez Rey*, Giovanni Luca Marchetti*, Danica Kragic,
Dmitri Jarnikov, Mike Holenderski

Abstract

We introduce Equivariant Isomorphic Networks (EquIN) – a method for
learning representations that are equivariant with respect to general group
actions over data. Differently from existing equivariant representation learn-
ers, EquIN is suitable for group actions that are not free, i.e., that stabilize
data via nontrivial symmetries. EquIN is theoretically grounded in the orbit-
stabilizer theorem from group theory. This guarantees that an ideal learner
infers isomorphic representations while trained on equivariance alone and thus
fully extracts the geometric structure of data. We provide an empirical inves-
tigation on image datasets with rotational symmetries and show that taking
stabilizers into account improves the quality of the representations.

E.1 Introduction

Incorporating data symmetries into deep neural representations defines a fundamen-
tal challenge and has been addressed in several recent works [1–5]. The overall aim
is to design representations that preserve symmetries and operate coherently with
respect to them – a functional property known as equivariance. This is because the
preservation of symmetries leads to the extraction of geometric and semantic struc-
tures in data, which can be exploited for data efficiency and generalization [6]. As
an example, the problem of disentangling semantic factors of variation in data has

E1
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been rephrased in terms of equivariant representations [7,8]. As disentanglement is
known to be unfeasible with no inductive biases or supervision [9], symmetries of
data arise as a geometric structure that can provide weak supervision and thus be
leveraged in order to disentangle semantic factors.

Figure E.1: An example of an action on data that is not free. The datapoint x is
stabilized by the symmetry g ∈ G.

The majority of models from the literature rely on the assumption that the
group of symmetries acts freely on data [10] i.e., that no datapoint is stabilized
by nontrivial symmetries. This avoids the need to model stabilizers of datapoints,
which are unknown subgroups of the given symmetry group. However, non-free
group actions arise in several practical scenarios. This happens, for example, when
considering images of objects acted upon by the rotation group via a change of
orientation. Such objects may be symmetrical, resulting in rotations leaving the
image almost identical and consequently ambiguous in its orientation, see Figure
E.1. Discerning the correct orientations of an object is important for applications
such as pose estimation [11] and reinforcement learning [12]. This motivates the
need to design equivariant representation learning frameworks that are capable of
modeling stabilizers and therefore suit non-free group actions.

In this work, we propose a method for learning equivariant representation for
general and potentially non-free group actions. Based on the Orbit-Stabilizer The-
orem from group theory, we design a model that outputs subsets of the group,
which represent the stabilizer subgroup up to a symmetry – a group theoretical
construction known as coset. The representation learner optimizes an equivariance
loss relying on supervision from symmetries alone. This means that we train our
model on a dataset consisting of relative symmetries between pairs of datapoints,
avoiding the need to know the whole group action over data a priori. From a theo-
retical perspective, the above-mentioned results from group theory guarantee that
an ideal learner infers representations that are isomorphic to the original dataset.
This implies that our representations completely preserve the symmetry structure
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while preventing any loss of information. We name our framework Equivariant
Isomorphic Networks – EquIN for short. In summary, our contributions include:

• A novel equivariant representation learning framework suitable for non-free
group actions.

• A discussion grounded on group theory with theoretical guarantees for iso-
morphism representations.

• An empirical investigation with comparisons to competing equivariant repre-
sentation learners on image datasets.

We provide Python code implementing our framework together with all the
experiments at the following repository: luis-armando-perez-rey/non-free.

E.2 Related Work

In this section, we first briefly survey representation learning methods from the lit-
erature leveraging on equivariance. We then draw connections between equivariant
representations and world models from reinforcement learning and discuss the role
of equivariance in terms of disentangling semantic factors of data.

Equivariant Representation Learning. Several works in the literature have
proposed and studied representation learning models that are equivariant with re-
spect to a group of data symmetries. These models are typically trained via a loss
encouraging equivariance on a dataset of relative symmetries between datapoints.
What distinguishes the models is the choice of the latent space and of the group ac-
tion over the latter. Euclidean latent spaces with linear or affine actions have been
explored in [1,13,14]. However, the intrinsic data manifold is non-Euclidean in gen-
eral, leading to representations that are non-isomorphic and that do not preserve
the geometric structure of the data. To amend this, a number of works have pro-
posed to design latent spaces that are isomorphic to disjoint copies of the symmetry
group [4, 10, 15, 16]. When the group action is free, this leads to isomorphic rep-
resentations and thus completely recovers the geometric structure of the data [10].
However, the proposed latent spaces are unsuitable for non-free actions. Since they
do not admit stabilizers, no equivariant map exists, and the model is thus unable to
learn a suitable representation. In the present work, we extend this line of research
by designing a latent space that enables learning equivariant representations in the
presence of stabilizers. Our model implicitly represents stabilizer subgroups and
leads to isomorphic representations for arbitrary group actions.

Latent World Models. Analogously to group actions, Markov Decision Processes
(MDPs) from reinforcement learning and control theory involve a, possibly stochas-
tic, interaction with an environment. This draws connections between MDPs and

https://github.com/luis-armando-perez-rey/non-free
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symmetries since the latter can be thought of as transformations and, thus, as a
form of interaction. The core difference is that in an MDP, no algebraic structure,
such as a group composition, is assumed on the set of interactions. In the context
of MDPs, a representation that is equivariant with respect to the agent’s actions
is referred to as latent World Model [12,17,18] or Markov Decision Process Homo-
morphism (MDPH) [19]. In an MDPH the latent action is learned together with
the representation by an additional model operating on the latent space. Although
this makes MDPHs more general than group-equivariant models, the resulting rep-
resentation is unstructured and uninterpretable. The additional assumptions of
equivariant representations translate instead into the preservation of the geometric
structure of data.

Disentanglement. As outlined in [6], a desirable property for representations is
disentanglement, i.e., the ability to decompose in the representations the semantic
factors of variations that explain the data. Although a number of methods have
been proposed for this purpose [20, 21], it has been shown that disentanglement is
mathematically unachievable in an unbiased and unsupervised way [9]. As an alter-
native, the notion has been rephrased in terms of symmetry and equivariance [7]. It
follows that isomorphic equivariant representations are guaranteed to be disentan-
gled in this sense [4, 10]. Since we aim for general equivariant representations that
are isomorphic, our proposed method achieves disentanglement as a by-product.

E.3 Group Theory Background

We review the fundamental group theory concepts necessary to formalize our rep-
resentation learning framework. For a complete treatment, we refer to [22].

Definition E.3.1. A group is a set G equipped with a composition map G×G → G
denoted by (g, h) 7→ gh, an inversion map G → G denoted by g 7→ g−1, and a
distinguished identity element 1 ∈ G such that for all g, h, k ∈ G:

Associativity Inversion Identity
g(hk) = (gh)k g−1g = gg−1 = 1 g1 = 1g = g

Elements of a group represent abstract symmetries. Spaces with a group of
symmetries G are said to be acted upon by G in the following sense.

Definition E.3.2. An action by a group G on a set X is a map G × X → X
denoted by (g, x) 7→ g · x, satisfying for all g, h ∈ G, x ∈ X :

Associativity Identity
g · (h · x) = (gh) · x 1 · x = x
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Suppose that G acts on a set X . The action defines a set of orbits X/G given
by the equivalence classes of the relation x ∼ y iff y = g · x for some g ∈ G. For
each x ∈ X , the stabilizer subgroup is defined as

Gx = {g ∈ G | g · x = x}. (E.1)

Stabilizers of elements in the same orbit are conjugate, meaning that for each x, y
belonging to the same orbit O there exists h ∈ G such that Gy = hGxh

−1. By
abuse of notation, we refer to the conjugacy class GO of stabilizers for O ∈ X/G.
The action is said to be free if all the stabilizers are trivial, i.e., GO = {1} for every
O.

We now recall the central notion for our representation learning framework.

Definition E.3.3. A map φ : X → Z between sets acted upon by G is equivariant
if φ(g ·x) = g ·φ(x) for every x ∈ X and g ∈ G. An equivariant bijection is referred
to as isomorphism.

Intuitively, an equivariant map between X and Z preserves their corresponding
symmetries. The following is the fundamental result on group actions [22].

Theorem E.3.1 (Orbit-Stabilizer). The following holds:

• Each orbit O is isomorphic to the set of (left) cosets G/GO = {gGO | g ∈ G}.
In other words, there is an isomorphism:

X ≃
∐

O∈X /G

G/GO ⊆ 2G × X/G (E.2)

where 2G denotes the power-set of G on which G acts by left multiplication
i.e., g ·A = {ga | a ∈ A}.

• Any equivariant map
φ : X →

∐
O∈X /G

G/GO (E.3)

that induces a bijection on orbits is an isomorphism.

Theorem E.3.1 describes arbitrary group actions completely and asserts that
orbit-preserving equivariant maps are isomorphisms. Our central idea is to lever-
age on this in order to design a representation learner that is guaranteed to be
isomorphic when trained on equivariance alone.
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Figure E.2: An illustration of EquIN encoding data equivariantly as subsets of the
symmetry group G. This results in representations that are suitable even when the action
by G on data is not free.

E.4 Equivariant Isomorphic Networks (EquIN)

Our goal is to design an equivariant representation learner based on Theorem E.3.1.
We aim to train a model

φ : X → Z (E.4)

with a latent space Z on a loss encouraging equivariance. The ideal choice for Z
is given by

∐
O∈X /G G/GO since the latter is isomorphic to X (Theorem E.3.1).

In other words, φ ideally outputs cosets of stabilizers of the input datapoints.
However, while we assume that G is known a priori, its action on X is not and has
to be inferred from data. Since the stabilizers depend on the group action, they are
unknown a priori as well. In order to circumvent the modeling of stabilizers and
their cosets, we rely on the following simple result:

Proposition E.4.1. Let φ : X → 2G be an equivariant map. Then for each x ∈ X
belonging to an orbit O, φ(x) contains a coset of (a conjugate of) GO.

Proof. Pick x ∈ X . Then for every g ∈ Gx it holds that φ(x) = φ(g · x) = g · φ(x).
In other words, Gxh = hh−1Gxh ⊆ φ(x) for each h ∈ φ(x). Since h−1Gxh is
conjugate to Gx the thesis follows.

Proposition E.4.1 enables φ to output arbitrary subsets of G instead of cosets
of stabilizers. As long as those subsets are minimal w.r.t. to inclusion, they will
coincide with the desired cosets.
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Based on this, we define the latent space of EquIN as Z = ZG × ZO and
implement the map φ as a pair of neural networks φG : X → ZG and φO : X → ZO.
The component ZG represents cosets of stabilizers while ZO represents orbits. Since
the output space of a neural network is finite-dimensional, we assume that the
stabilizers of the action are finite. The model φG then outputs N elements

φG(x) = {φ1
G(x), · · · , φN

G (x)} ⊆ G (E.5)

where φi
G(x) ∈ G for all i. The hyperparameter N should be ideally chosen larger

than the cardinality of the stabilizers. On the other hand, the output of φO consists
of a vector of arbitrary dimensionality. The only requirement is that the output
space of φO should have enough capacity to contain the space of orbits X/G.

E.4.1 Parametrizing G via the Exponential Map
The output space of usual machine learning models such as deep neural networks
is Euclidean. However, φG needs to output elements of the group G (see Equation
E.5), which may be non-Euclidean as in the case of G = SO(n). Therefore, in order
to implement φG, it is necessary to parametrize G. To this end, we assume that
G is a differentiable manifold, with differentiable composition and inversion maps,
i.e., that G is a Lie group. One can then define the Lie algebra g of G as the tangent
space to G at 1.

We propose to rely on the exponential map g → G, denoted by v 7→ ev, to
parametrize G. This means that φG first outputs N elements

φG(x) = {v1, · · · , vN } ⊆ g (E.6)

that get subsequently mapped into G as {ev1
, · · · , evN }. Although the exponen-

tial map can be defined for general Lie groups by solving an appropriate ordinary
differential equation, we focus on the case G ⊆ GL(n). The Lie algebra g is then
contained in the space of n× n matrices and the exponential map amounts to the
matrix Taylor expansion

ev =
∑
k≥0

vk

k! (E.7)

where vk denotes the power of v as a matrix. For specific groups, the latter can
be simplified via simple closed formulas. For example, the exponential map of Rn

is the identity while for SO(3) it can be efficiently computed via the Rodrigues’
formula [23].

E.4.2 Training Objective
As mentioned, our dataset D consists of samples from the unknown group action.
This means that datapoints are triplets (x, g, y) ∈ X ×G× X with y = g ·x. Given
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a datapoint (x, g, y) ∈ D the learner φG optimizes the equivariance loss over its
parameters:

LG(x, g, y) = d(g · φG(x), φG(y)) (E.8)
where d is a semi-metric for sets. We opt for the asymmetric Chamfer distance

d(A,B) = 1
|A|

∑
a∈A

min
b∈B

dG(a, b) (E.9)

because of its differentiability properties. Any other differentiable distance between
sets of points can be deployed as an alternative. Here dG is a metric on G and is
typically set as the squared Euclidean for G = Rn and as the squared Frobenius
for G = SO(n). As previously discussed, we wish φG(x), when seen as a set, to
be minimal in cardinality. To this end, we add the following regularization term
measuring the discrete entropy:

L̃G(x) = λ

N2

∑
1≤i,j≤N

dG(φi
G(x), φj

G(x)) (E.10)

where λ is a weighting hyperparameter. On the other hand, since orbits are invari-
ant to the group action φO optimizes a contrastive loss. We opt for the popular
InfoNCE loss from the literature [24]:

LO(x, y) = dO(φO(x), φO(y)) + logEx′

[
e−dO(φO(x′), φO(x))

]
(E.11)

where x′ is marginalized from D. As customary for the InfoNCE loss, we normalize
the output of φO and set dO(a, b) = − cos(∠ab) = −a · b. The second summand
of LO encourages injectivity of φO and as such prevents orbits from overlapping in
the representation.

The Orbit-Stabilizer Theorem (Theorem E.3.1) guarantees that if EquIN is im-
plemented with ideal learners φG, φO then it infers isomorphic representations in
the following sense. If the LG(x, g, y) and the first summand of LO(x, y) vanish for
every (x, g, y) then φ is equivariant. If moreover the regularizations, L̃G and the
second summand of LO, are at a minimum then φG(x) coincides with a coset of
GO for every x ∈ O (Proposition E.4.1) and φO is injective. The second claim of
Theorem E.3.1 implies then that the representation is isomorphic on its image, as
desired.

E.5 Experiments

We empirically investigate EquIN on image data acted upon by a variety Lie groups.
Our aim is to show both qualitatively and quantitatively that EquIN reliably infers
isomorphic equivariant representations for non-free group actions.
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We implement the neural networks φG and φO as a ResNet18 [25]. For a
datapoint x ∈ X , the network implements multiple heads to produce embeddings
{φ1

G(x), · · · , φN
G (x)} ⊆ G. The output dimension of φO is set to 3. We train the

model for 50 epochs using the AdamW optimizer [26] with a learning rate of 10−4

and batches of 16 triplets (x, g, y) ∈ D.

E.5.1 Datasets

We consider the following datasets consisting of 64 × 64 images subject to non-free
group actions. Samples from these datasets are shown in Figure E.4.

Rotating Arrows: images of radial configurations of ν ∈ {1, 2, 3, 4, 5} arrows
rotated by G = SO(2). The number of arrows ν determines the orbit and the cor-
responding stabilizer is (isomorphic to) the cyclic group Cν of cardinality ν. The
dataset contains 2500 triplets (x, g, y) per orbit.

Colored Arrows: images similar to Rotating Arrows but with the arrows of
five different colors. This extra factor produces additional orbits with the same
stabilizer subgroups. The number of orbits is therefore 25. The dataset contains
2000 triplets per orbit.

Double Arrows: images of two radial configurations of 2, 3 and 3, 5 arrows re-
spectively rotated by the torus G = SO(2)×SO(2). The action produces two orbits
with stabilizers given by products of cyclic groups: C2 × C3 and C3 × C5 respec-
tively. The dataset contains 2000 triplets per orbit.

ModelNet: images of monochromatic objects from ModelNet40 [27] rotated by
G = SO(2) along an axis. We consider five objects: an airplane, a chair, a lamp,
a bathtub and a stool. Each object corresponds to a single orbit. The lamp, the
stool and the chair have the cyclic group C4 as stabilizer while the action over the
airplane and the bathub is free. The dataset contains 2500 triplets per orbit.

Solids: images of a monochromatic tetrahedron, cube and icosahedron [28] rotated
by G = SO(3). Each solid defines an orbit, and the stabilizers of the tetrahedron,
the cube, and the icosahedron are subgroups of order 12, 24 and 60 respectively.
The dataset contains 7500 triplets per orbit.

E.5.2 Comparisons

We compare EquIN with the following two equivariant representation learning mod-
els.

Baseline: a model corresponding to EquIN with N = 1 where φG outputs a single
element of G. The latent space is Z = G× ZO, on which G acts freely. We deploy



E10 PAPER E. EQUIVARIANT REPRESENTATIONS AND STABILIZERS

this as the baseline since it has been proposed with minor variations in a number
of previous works [4, 8, 10,29] assuming free group actions.

Equivariant Neural Renderer (ENR): a model from [30] implementing a tenso-
rial latent space Z = RS3 , thought as a scalar signal space on a S × S × S grid in
R3. The group SO(3) act approximately on Z by rotating the grid and interpolat-
ing the obtained values. The model is trained jointly with a decoder ψ : Z → X
and optimizes a variation of the equivariance loss that incorporates reconstruction:
Ex,g,y=g·x[dX (y, ψ(g · φ(x)))] where dX is the binary cross-entropy for normalized
images. Although the action on Z is free, the latent discretization and consequent
interpolation make the model only approximately equivariant. Similarly to EquIN,
we implement ENR as ResNet18. As suggested in the original work [30] we deploy
3D convolutional layers around the latent and set to zero the latent dimensions
outside a ball. We set S = 8 with 160 non-zero latent dimensions since this value is
comparable to the latent dimensionality of EquIN, between 7 and 250 dimensions
depending on N , making the comparison fair. Note that ENR is inapplicable to
Double Arrows since its symmetry group is not naturally embedded into SO(3).

E.5.3 Quantitative Results

In order to quantitatively compare the models, we rely on the following evaluation
metrics computed on a test dataset Dtest consisting of 10% of the corresponding
training data:

Hit-Rate: a standard score comparing equivariant representations with different
latent space geometries [17]. Given a test triple (x, g, y = g ·x) ∈ Dtest, we say that
‘x hits y’ if φ(y) is the nearest neighbor in Z of g · φ(x) among a random batch of
encodings {φ(x)}x∈B with |B| = 20. The hit-rate is then defined as the number of
times x hits y divided by the test set size. For each model, the nearest neighbor
is computed with respect to the same latent metric d as the one used for training.

Figure E.3: Diagram explaining the estimation of the disentanglement metric for EquIN.
This example assumes that G = SO(2) and that A is the identity.
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Higher values of the metric are better.

Disentanglement: an evaluation metric proposed in [4] to measure disentangle-
ment according to the symmetry-based definition of [7]. This metric is designed for
groups in the form G = SO(2)T and therefore is inapplicable to the Solids dataset.
Per orbit, the test set is organized into datapoints of the form y = g · x0 where x0
is an arbitrary point in the given orbit. In order to compute the metric, the test
dataset is encoded into Z via the given representation and then projected to R2T

via principal component analysis. Then for each independent copy of SO(2) ⊆ G, a
group action on the corresponding copy of R2 is inferred by fitting parameters via a
grid search. Finally, the metric computes the average dispersion of the transformed
embeddings as the variance of g−1 · AφG(y). For EquIN, we propose a modified
version accounting for the fact that φG produces multiple points in G using the
Chamfer distance d and averaging the dispersion with respect to each transformed
embedding, see Figure E.3. The formula for computing the metric is given by:

Ey,y′ [d(h−1 ·AφG(y′), g−1 ·AφG(y))] (E.12)

where y = g · x0 and y′ = h · x0. Lower values of the metric are better.

The results are summarized in Table E.1. EquIN achieves significantly better
scores than the baseline. The latter is unable to model the stabilizers in its latent
space, leading to representations of poor quality and loss of information. ENR
is instead competitive with EquIN. Its latent space suits non-free group actions
since stabilizers can be modelled as signals over the latent three-dimensional grid.
ENR achieves similar values of hit-rate compared to EquIN. The latter generally
outperforms ENR, especially on the ModelNet dataset, while is outpermformed
on Rotating Arrows. According to the disentanglement metric, EquIN achieves
significantly lower scores than ENR. This is probably due to the fact the latent
group action in ENR is approximate, making the model unable to infer represen-
tations that are equivariant at a granular scale.

E.5.4 Qualitative Results

We provide a number of visualizations as a qualitative evaluation of EquIN. Figure
E.4 illustrates the output of φG on the various datasets. As can be seen, EquIN
correctly infers the stabilizers i.e., the cyclic subgroups of SO(2) and the subgroup
of SO(3) of order 12. When N is larger than the ground-truth cardinalities of
stabilizers, the points φi

G are overlapped and collapse to the number of stabilizers as
expected. Figure E.5 displays the output of φO for data from Colored Arrows.
The orbits are correctly separated in ZO. Therefore, the model is able to distinguish
data due to variability in the number ν of arrows as well as in their color.
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Table E.1: Mean and standard deviation of the metrics across five repetitions. The
number juxtaposed to the name of EquIN indicates the cardinality N of the output of φG.

Dataset Model Disentanglement (↓) Hit-Rate (↑)

Rotating
Arrows

Baseline 1.582±0.013 0.368±0.004

EquIN5 0.009±0.005 0.880±0.021

EquIN10 0.092±0.063 0.857±0.050

ENR 0.077±0.028 0.918±0.009

Colored
Arrows

Baseline 1.574±0.007 0.430±0.004

EquIN5 0.021±0.015 0.930±0.055

EquIN10 0.001±0.001 0.976±0.005

ENR 0.106±0.032 0.949±0.018

Double
Arrows

Baseline 1.926±0.019 0.023±0.004

EquIN6 0.028±0.006 0.512±0.011

EquIN15 0.004±0.001 0.820±0.104

EquIN20 0.002±0.001 0.934±0.020

ModelNet

Baseline 1.003±0.228 0.538±0.086

EquIN4 0.012±0.022 0.917±0.074

EquIN10 0.003±0.001 0.910±0.011

ENR 0.037±0.038 0.817±0.085

Solids

Baseline - 0.123±0.007

EquIN12 - 0.126±0.004

EquIN24 - 0.139±0.056

EquIN60 - 0.596±0.106

EquIN80 - 0.795±0.230

ENR - 0.772±0.095

E.5.5 Hyperparameter Analysis

For our last experiment, we investigate the effects of the hyperparameters N and
λ when training EquIN on datasets with different numbers of stabilizers.

First, we show that a value of N larger than the cardinality of the stabilizers is
necessary to achieve good values of disentanglement, and hit-rate for datasets with
non-free group action, see Figure E.6. However, large values of N can result in
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Figure E.4: Visualization of datapoints x and the corresponding predicted (coset of the)
stabilizer φG(x). For Double Arrows, the torus G = SO(2) × SO(2) is visualized as an
identified square. For the tetrahedron from Solids, G is visualized as a projective space
RP3 ≃ SO(3).

Figure E.5: Embeddings φO(x) ∈ ZO ⊆ R3 for x in Colored Arrows. Each symbol
represents the ground-truth cardinality ν = |Gx| of the stabilizer while the color of the
symbol represents the corresponding color of the arrow (left). The same embeddings are
projected onto R2 via principal component analysis (right).

non-collapsing embeddings φG corresponding to non-minimal cosets of the stabiliz-
ers. In these cases, the regularization term of Equation E.10 and its corresponding
weight λ plays an important role.

The bottom row of Figure E.7 shows the embeddings φG(x) learnt for a data-
point x ∈ X with stabilizer Gx ≃ C2 of cardinality two. The plots show how for
low values of λ, the network converges to a non-minimal set. When an optimal
value is chosen, such as λ = 1, the embeddings obtained with φG collapse to a set
with the same cardinality as the stabilizers. If λ is too large, the embeddings tend
to degenerate and collapse to a single point.

If the value of λ is too small, the discrete entropy of the learnt embeddings is
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Figure E.6: Disentanglement and hit-rate for models trained with different values of N .
Each line in the plot represents the results of a model trained on a dataset with a single
orbit whose stabilizer has cardinality ν. The plots show the mean and standard deviation
across five repetitions.

λ = 0.001 λ = 1 λ = 10x

φ
G

(x
)

Figure E.7: Discrete entropy for models trained on the arrows dataset with different
cardinalities of stabilizer ν and two distinct values of λ (top row). Example embeddings
φG(x) obtained for a datapoint x with two stabilizers obtained with models using λ ∈
{0.001, 1, 10} (bottom row).

not restricted. It continues to increase even if the number of embeddings matches
the correct number of stabilizers. When an appropriate value of λ is chosen, the
entropy becomes more stable as the embeddings have converged to the correct car-
dinality.

The plots in Figure E.8 show the inverse relationship between λ and the entropy
of the encoder φG that describes the collapse of the embeddings. The collapse of
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Figure E.8: Disentanglement, discrete entropy and hit-rate for models trained with
different values of λ and fixed N = 5. The training dataset corresponds to the rotating
arrows with ν ∈ {1, 2, 3, 4, 5}. Each line shows the mean and standard deviation across
five repetitions.

the embeddings also results in a lower performance of disentanglement and hit-rate
by the models as seen for higher values of λ > 1. Throughout the experiments, we
fix the value of λ = 1 except for Solids where a value of λ = 10 was chosen since
the number N used is larger.

E.6 Conclusions and Future Work

In this work, we introduced EquIN, a method for learning equivariant representa-
tions for possibly non-free group actions. We discussed the theoretical foundations
and empirically investigated the method on images with rotational symmetries. We
showed that our model can capture the cosets of the group stabilizers and separate
the information characterizing multiple orbits.

EquIN relies on the assumption that the stabilizers of the group action are
finite. However, non-discrete stabilizer subgroups sometimes occur in practice, e.g.,
in continuous symmetrical objects such as cones, cylinders or spheres. Therefore,
an interesting future direction is designing an equivariant representation learner
suitable for group actions with non-discrete stabilizers.
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Back to the Manifold: Recovering
from Out-of-Distribution States

Alfredo Reichlin, Giovanni Luca Marchetti, Hang Yin, Ali Ghadirzadeh,
Danica Kragic

Abstract

Learning from previously collected datasets of expert data offers the promise
of acquiring robotic policies without unsafe and costly online explorations.
However, a major challenge is a distributional shift between the states in the
training dataset and the ones visited by the learned policy at the test time.
While prior works mainly studied the distribution shift caused by the policy
during the offline training, the problem of recovering from out-of-distribution
states at the deployment time is not very well studied yet. We alleviate the
distributional shift at the deployment time by introducing a recovery policy
that brings the agent back to the training manifold whenever it steps out
of the in-distribution states, e.g., due to an external perturbation. The re-
covery policy relies on an approximation of the training data density and a
learned equivariant mapping that maps visual observations into a latent space
in which translations correspond to the robot actions. We demonstrate the
effectiveness of the proposed method through several manipulation experi-
ments on a real robotic platform. Our results show that the recovery policy
enables the agent to complete tasks while the behavioral cloning alone fails
because of the distributional shift problem.

F.1 Introduction

Data-driven methods in robotics, including reinforcement learning (RL), are often
challenged by expensive, slow and unsafe data collection on real systems [1]. Offline
solutions, such as Offline RL [2] and Behavior Cloning (BC) [3], learn a control

F1
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Figure F.1: The proposed recovery policy performs gradient ascent on the estimated
density ρ of the demonstrations to get the agent back in-distribution.

policy from a pre-collected dataset hence avoiding the problems of interacting with
a physical robot. However, learning from a fixed offline dataset may compromise
the capacity of the learner on dealing with novel situations not contained in the
training dataset at the test time. Querying the trained policy on such out-of-
distribution (OOD) inputs can exacerbate the compounding of the errors when the
policy is subsequently applied to states evolved according to the previous state and
action [4]. Offline RL avoids this problem by constraining the learned policy to
deviate minimally from the policy that collected the data [5–7]. However, there is
no mechanism for offline RL to recover from OOD conditions, for example, when
starting at a random unseen initial state or being exposed to external perturbations
during execution.

One way to improve the performance of the agent in the deployment phase
is to optimize an extra objective, e.g., by minimizing the uncertainty-level of the
agent in predicting the next state [8, 9] which implicitly helps the agent to stay
in-distribution. However, designing such objectives is challenging and they may re-
quire learning probabilistic visual forward dynamic models that output a measure
of uncertainty.

In this work, we propose a method to augment a policy trained by offline be-
havior cloning with a recovery policy whose actions are computed by a gradient
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ascent on the estimated density of the training distribution. This is illustrated in
Figure F.1, in which the robot is guided by the recovery policy providing action
directions to stay in-distribution while approaching the task object. We achieve
this by training a model that encodes input visual observations into a Euclidean
latent space, where translations in this space correspond to robot actions, such as
Cartesian displacements of the robot end-effector. The encoding has a property
known as translational equivariance that allows for the conversion of the aforemen-
tioned gradient of the estimated training data density into an action. Therefore, the
recovery design benefits from a latent representation that (1) is low-dimensional,
thus amenable to density estimation, and (2) is task-agnostic, i.e., it can be shared
among other tasks.

We empirically demonstrate the feasibility of the proposed method on real-
robotic visuomotor policy training tasks. Compared to a behavioral cloning policy,
we show that the augmented policy improves the success rate on manipulation tasks.
Additionally, when the robot is externally pushed OOD, it allows to recover and
successfully complete the task. We also demonstrate how the trained latent equiv-
ariant representation can be shared among several tasks, making it task-agnostic.
Our main contributions are:

• A method to augment policies trained with offline data to recover from OOD
conditions through the gradient of a conditional density estimator.

• An empirical evaluation of the performances of the proposed method on real-
robotic manipulation tasks.

F.2 Related Work

Offline policy learning mainly falls into behavior cloning [10] and offline RL [2].
The classic formulation of BC has a number of limitations when learning on real-
world data. The most prominent of which, is called the compounding error [11]
and occurs due to the sequential nature of the learning framework. This problem
is even more profound when learning from small-sized datasets. There have been
a number of works targeting this, however, they generally break the fully offline
formulation [4, 12,13].

Offline RL, on the other hand, formulates the problem of learning a policy using
offline data from an RL perspective. A naive application of RL on previously col-
lected data results in either an high variance of the learning process [14] or wrong
estimates of the expected return [15]. Possible solutions to this involve either con-
straining the learned policy to minimize the deviation from the one that collected
the data (behavioral policy) [5,16,17] or incentivizing the policy to avoid actions on
the boundary of the training distribution by changing the reward function [6,7,18].
Moreover, in case the agent happens to step OOD, or it is forcefully brought there,
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there is no explicit way to recover. Which is what we address in this work.

Safety measures in the context of a learned controller have been addressed in
different forms [19]. One common thread is the identification of safe regions where
the agent can operate and the use of a recovery policy. In [20], unknown regions are
defined by the uncertainty estimate of a perception module. When the agent steps
there, a model-based reset policy is triggered. Differently from our method, they
require a model of the objects and they assume the transition function is known
in a subset of the state space. Other works instead assume to directly have access
to a constraint function from the environment or approximate it from data, which
quantifies the safeness of states. A policy can then be learned to actively avoid
such states [21,22] or plan a trajectory that remains in the safe region of the state
space [23–25]. Having access to the constraint function or data-points in unsafe
states can, however, be problematic for robotic applications. A similar work to
ours proposes to learn an approximation of the tangent space of the task manifold
at any point [26]. This can, in turn, be used to plan the overall trajectory. If some
kind of perturbation occurs, the agent can project its current position in the man-
ifold and plan a path to get back in. The projection is learned explicitly using a
dataset of perturbed points. On the contrary, the way we learn the encoder allows
us to automatically get the projection direction even from high-dimensional states
like images.

State representation for control has been widely studied in prior works [27–29].
Dividing the optimization of the representation from the policy has the advantage of
easing the learning process and enables to constrain the policy formulation [30,31].
Moreover, the learned representation can be re-used for different tasks assuming
the underlying dynamics remain the same. In [32] and [33] an encoder is trained
to compress the state representation while retaining all of the information. A tran-
sition model is then inferred on top of the representation to predict the dynamics
of the environment. This formulation, however, produces a generic representation
with no particular properties. To this end, more rigid constraints have been pro-
posed. In [34] the representation is forced to evolve linearly in time, while in [30] the
model outputs spatial features representing the observations. Moreover, by impos-
ing a linear dynamic on the representation, the learned controller can be simplified
and, under some assumptions, learned optimally [35, 36]. Unlike our method, this
dynamic cannot be directly converted into an action. [37] train a variational au-
toencoder with the additional constraint of making the latent representation evolve
according to Newtonian physics. This allows for classical controllers, like a PID,
to be applied directly. In [38], they propose to learn an encoder and a transition
model at the same time. Both models are learned such that the latent representa-
tion is equivariant to the transition model. Differently from all of these methods,
we require our representation to be globally translational-equivariant in order to
convert the gradient of the density estimator into a viable action.
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F.3 Background

We study the problem of learning a policy using a Markov decision process (MDP).
We assume the MDP to be fully observable and specified by the tuple (S,A, T ).
Here S is the set of observations representing the state of the environment, A is
the set of actions the agent can take, and T : S×A → S is the transition function
governing the change in observations when the agent performs an action. We can
then formulate the problem of policy training as learning a map π : S → A by
minimizing a cost function. Throughout this paper we define the set of states S
to be images and the set of actions A ⊆ Rn to be continuous translations of the
agent’s end-effector in the Euclidean space. A dataset D of experts’ demonstrations
is a collection of trajectories representing the robot completing a task in different
conditions. This dataset can be considered as a collection of tuples D = {(s, a, s′)}
with s′ = T (s, a).

F.3.1 Behavioral Cloning

Behavioral Cloning is one of the most widely used imitation learning (IL) ap-
proaches due to its ease of implementation. It defines the cost function of the
policy π as a supervised learning loss. As such, the policy’s parameters θ can be in-
ferred by minimizing the Mean Squared Error (MSE) between its estimated actions
and the ones in the dataset D:

π = πθ∗ , θ∗ = argmin
θ

∑
(s,a)∈D

∥πθ(s) − a∥2. (F.1)

This simple IL strategy offers a number of advantages. First, it is easy to implement
and stable to train. Second, it can be learned completely from offline data requiring
neither access to the environment nor any knowledge of the transition model or a
reward function.

F.3.2 Equivariant Mapping

In this section, we explain equivariance as a property of a mapping E that in our
case maps an input observation s into a latent representation z ∈ Z, i.e. z = E(s).
Here, we consider two transition functions, T : S × A → S and T ′ : Z × A → Z.
The map E : S → Z is defined to be equivariant with respect to the transitions T ,
T ′ if [39, 40]:

E(T (s, a)) = T ′(E(s), a). (F.2)

Figure F.2 visually illustrates the equivariance property for the mapping E and
the transitions T and T ′. Intuitively, mapping the observation into the latent space
followed by the transition T ′ must result in the same latent value z as applying the
transition T followed by mapping the resulting observation into the latent space.
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Figure F.2: Commutative diagram illustrating equivariance as a property of the mapping
E.

Figure F.3: Overview of the proposed method. Top: the equivariant model E maps the
observation space (images) to the Euclidean latent space Z contained in the action space
A. Actions of the agent correspond to translations in Z. Bottom: the latent density ρ
is estimated conditioned on task-specific information. The recovery policy πR follows the
gradient of ρ and thus redirects the agent back to the training manifold.

F.4 Method

In this section, we introduce our method that augments a policy trained with BC
with a recovery strategy which can bring the agent back in-distribution, where the
BC policy performs optimally. We achieve this by introducing a recovery policy
πR : S → A whose actions move the agent to the training manifold, i.e., within the
support of the observations in the training dataset. The intuition is that the agent
should follow the recovery policy to recover from OOD states, and the BC policy
when in-distribution to complete the task. Therefore, we propose to compute the
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actions given by each policy, and find the weighted sum of the actions to obtain the
final policy output. The weights are computed according to a normalized estimation
of the density of the training states. However, as we describe in section F.4.2, we
estimate the density by first mapping the observation into a latent space z = E(s),
and then computing the density given the latent variable z as the input ρ(z). To
ensure values in (0, 1), the estimated density is normalized using a sigmoid function
ρ̄(z) = 1/(1 + exp(−(ρ(z) + ϵ)/τ)) with an appropriate offset ϵ and temperature τ
parameters, and then used as the following to compute the output of the augmented
policy π̃:

π̃(s) = ρ̄(z)π(s) + (1 − ρ̄(z))πR(s). (F.3)

In the following sections, we first introduce our proposed equivariant mapping
which maps raw visual observations into a latent space in which translation cor-
responds to the robot actions. Then, we introduce our method to estimate the
density of the training observations in the latent space. Finally, we describe how
the recovery policy is constructed based on the learned equivariant mapping.

F.4.1 Learning an Equivariant Mapping

We propose to learn a low-dimensional representation of the input visual observa-
tions by explicitly learning an equivariant mapping E : S → Z. As we describe in
section F.4.3, we exploit the equivariant property of the mapping to construct the
recovery policy. Besides, learning a low-dimensional representation of visual inputs
can also help in estimating the density of the training data.

Given the transition of the MDP T (s, a), we consider the following transition
in the latent space: T ′(z, a) = z + a. This is because the robot actions translate
the end-effector in the Euclidean space. We refer to Section F.6 for a discussion on
how this can be generalized to actions beyond translations of an end-effector of a
manipulator. We want to learn an equivariant mapping with respect to T, T ′ i.e.,
E has to satisfy the following version of Equation F.2:

E(T (s, a)) = E(s) + a. (F.4)

As shown in Figure F.3 (left), E implements translational equivariance since it
converts transitions into translations. Note that Equation F.4 assumes that A
and Z share the same ambient space Rn. The equivariant model E is trained
on states and actions well-distributed within the environment i.e., a dataset D′ is
pre-collected independently from the specific task. As long as the scene composed
of the extrinsic objects in the robot’s environment remains constant, E can be
deployed in different tasks. In order to ensure a correct representation, D′ needs
to be distributed as uniformly as possible. The mapping E is parameterized by a
neural network E = Eφ with output space Rn and optimized by minimizing the
following objective function on the dataset D′:
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φ∗ = argmin
φ

∑
(s,a,s′)∈D′

∥Eφ(s′) − Eφ(s) − a∥2. (F.5)

F.4.2 Estimating the Density of the Training States

We estimate the probability density of the agent being within the support of the
training data by learning a parametric density estimator. The density estimator
needs to be conditioned on the position of the manipulation objects for the task.
It is thus conditioned on the image observation for the initial configuration of the
manipulation task (Figure F.3, right). We use Mixture Density Networks (MDN)
[41], which estimate a conditional Gaussian mixture density. The MDN outputs
the density in the form of means µi, (diagonal) co-variances σi and weights wi

of a mixture of Gaussians N (z; µi, σi). The density in the point z can then be
computed as follows:

ρ(z) =
N∑

i=1
wiN (z; µi, σi). (F.6)

The MDN is trained by minimizing the average negative log-likelihood of ρ over
the observations in the training dataset D.

F.4.3 Recovery Policy

The recovery policy is responsible to output actions that bring the agent closer
to states within the support of the training data. This is done by finding an
action that brings the agent into a state with higher estimated density. This is
equivalent to performing gradient ascent on the estimated density function in the
latent space. Because of the translational-equivariant property of our mapping,
i.e., z′ = E(s′) = E(s) + a = z + a, the gradient ∇zρ(z) is equal to a robot action
that moves the agent to higher density states. Therefore, we can simply define the
output of the recovery policy for an observation s as:

πR(s) = η∇z ρ(E(s)) (F.7)

where η is a scale parameter. Once the density of states has been estimated in
the latent space, the recovery policy can be implemented accordingly without any
further training phase.

F.5 Experiments

In order to assess the effectiveness of the recovery of the proposed model, we present
the results of a number of experiments. First, the experimental setup is described,
then details on each of the experiments are presented.
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• The first experiment compares the performances of a BC agent with and
without recovery on a robotic manipulation task.

• The second experiment tests the ability of a BC agent learned from noisy
data, with and without recovery, in performing the same task.

• The third experiment compares the ability of BC, with and without recovery,
in resuming a task if brought forcefully OOD.

• The fourth experiment involves solving a different task. The goal of this
experiment is to show that the representation is agnostic to the task.

F.5.1 Experimental Setup
All the experiments are performed in the real world using a YuMi-IRB 14000 col-
laborative robot by ABB. We record all the data through teleoperation of the robot
by a human. To implement the teleoperation system we used a virtual reality (VR)
system connected to the robot’s controllers. Teleoperation through VR has, in fact,
proved to be a viable option for robotics applications thanks mainly to its ease in
use and speed of data collection [42–45]. In particular, for our experiments, we
interface an Oculus Quest 2 device to the robot’s operating system.

To record the data, the human operator stands in front of the robot and op-
erates the VR hand controller to command desired velocities to the end-effector
of the robotic arm. Commands are thus mirrored with respect to the human per-
spective. Velocity commands are sent with a frequency of 10Hz to the robot that
then translates them to the equivalent joint velocities. In all of the experiments,
the velocities are just translations in space as no angular velocities are considered,
meaning that A ⊆ R3. Images, representing the state of the system by a static
camera placed in front of the robot in coordination with the VR commands.

The setup is the same across all experiments and its shown in Figure F.4. The
robot is placed in front of a table where two objects are placed, a small plastic
orange cylinder, the manipulated object, and a bigger plastic yellow cylinder, the
target object. Throughout all the experiments the target object is never moved
while the robot needs to interact with the manipulated object.

F.5.2 Networks’ Architectures
The equivariant encoder E is parameterized by 5 convolutional layers with 64 chan-
nels except the last one with 8 followed by a hidden fully-connected layer with 64
units, every hidden layer is followed by a ReLU activation function. The network
is trained with a learning rate of 10−3 using the Adam optimizer. Input images are
cropped, resized and normalized before being fed to the network.
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The policy is parameterized by a neural network with a ResNet18 backbone pre-
trained on ImageNet and a randomly initialized fully connected head with 2 hidden
layers of 64 units each. The MDN density estimator is parameterized by a CNN
model of 4 layers with 64 channels and one with 8 channels followed by 3 output
layers for the mean, diagonal variance and weights of the mixture of Gaussians. The
MDN is trained, as stated in Section F.4.2, to minimize the negative log-likelihood
of the latent representation of the equivariant encoder. The MDN is conditioned
on the initial image of each trajectory and the gripper state. The reason being
that the model needs to be aware of the position of the object to be picked up
to output a conditional density but it should not have access to the position of
the gripper. There is, in fact, a functional dependency between images where the
gripper is shown and the density estimate itself. By conditioning the MDN on the
current image during the roll-out, the density would collapse. Conditioning the
model on the gripper state is also needed as the position of the gripper should
be considered in-distribution or not based on the object being grasped or not,
respectively. Training an MDN is notoriously unstable [46] and we found that
adding a deconvolution decoder that maps a middle representation of the model
into a reconstruction of the original image can stabilize the training. Both the
policy and the MDN are trained using the Adam optimizer with a learning rate of
10−4. The other hyper-parameters used for this experiment are the following: η =
0.05, ϵ = 2.0 and τ = 0.5.

F.5.3 Equivariant Encoder

The equivariant representation used for the density estimator is agnostic to the
task and can be learned a priori. For the dataset D′, we collect 6 trajectories of the
robotic arm moving uniformly in the space and interacting with the manipulated
object for a total of 1741 steps. Interaction with the objects is needed in order to
make the learned encoder invariant to its position. Equivariance is defined with
respect to the robot’s actions only and the learned representation should not be
sensitive to the object’s position.

Because the actions are translations in the Euclidean 3D space the equivariant
representation will correspond to points in 3D where the gripper of the robot is
located (the central point of the actual movement). The representation preserves
distances so the scale is one to one with the actions’ magnitude. This can be seen
in Figure F.4 where the expert’s trajectories have been mapped into the latent
space of the encoder and projected in 2D. In fact, the shape of the table and the
relative position of the objects are maintained. For interpretability, we force the
initial configuration of the robot to be the origin of the representation by including
a second term in the loss of Equation F.5.
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Figure F.4: Experimental setup for the pick-and-drop task. The small bin (manipulated
object) has to be dropped inside the larger one (target object). A trajectory recorded by
the expert via teleoperation is also displayed.

F.5.4 Pick-and-Drop Experiment

Experiment description

In the first experiment, the goal is for the robot to pick the manipulated object,
move it on top of the target object and drop it inside. Here the actions are the
combination of the gripper’s velocity and a binary value representing the state of
the gripper (either open or close). The initial position of the manipulated object
is initialized randomly in the first half of the table while the target object is kept
fixed on the other half of the table. A dataset of 120 trajectories of a human
demonstrating the task is used to train the model. The dataset accounts for 5526
steps in total and is used to train both the behavioral cloning policy and the density
estimator. The demonstrations are collected using the VR teleoperation system
described above. However, these demonstrations cannot be assumed optimal due to
the noise in the teleoperation system and the non-Markovianity of the environment.
In fact, there are two elements here that break the Markovian assumption. The first
is the current velocity and acceleration the robot has before giving it a command.
The next state will vary depending on these properties that are not inferable from
one single image. The second element is the inverse kinematic module of the robot.
The resulting actual displacement of the end effector will also depend on the current
state of the joints that is not fully observable from the images.

Results

In the first set of experiments, we test the proposed method against the imitation
learning policy without the recovery term. The models are evaluated on 20 trials
with the manipulated object in different positions. Performances are based on their
ability to successfully grasp the manipulated object and their ability to then drop it
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Table F.1: Results of the pick-and-drop task for a standard behavioral cloning policy
with and without the proposed recovery. The models are compared in their ability of
picking the manipulated object correctly and dropping it inside the target object. The
table shows results on models learned on correct demonstrations as well as demonstrations
with actions that are shifted by one time step with respect to the corresponding images.
Models are also tested on their ability to overcome perturbations while performing the
task.

Model Grasp Drop

Pick-and-Drop
BC 25% 25%
BC with Recovery 70% 55%

Shifted Actions Pick-and-Drop
BC 0% 0%
BC with Recovery 70% 50%

Perturbed Pick-and-Drop
BC 30% 10%
BC with Recovery 100% 70%

inside the target bin. Table F.1 shows the results of this experiment. The standard
BC model manages to complete the task only one-fourth of the time. On the other
hand, coupling the same policy with the proposed recovery lets the agent adjust its
position every time it makes a mistake that would bring it OOD. This results in a
much higher success rate.

Further, to assess the robustness of the recovery policy, we test it in noisy
conditions. We train a second BC policy on the same dataset but with all the
actions shifted by one step with respect to the images. We effectively simulate a
data gathering scenario where there is a delay between the camera sensor and the
actual movement of the robot. Two subsequent states are not connected by the
saved action. However, because of the uniformity of the task, the real action does
not differ considerably and the overall motion of the agent keeps a similar behavior.
Nonetheless, a policy trained on this sub-optimal dataset does not manage to solve
the task even once. On the other hand, by coupling the same policy with the
proposed recovery module the performances are quite unchanged with respect to
the correct dataset case, see Table F.1.

Lastly, we test the BC policy with and without recovery by applying a random
displacement to the robot. At the beginning of the task, we move the gripper in a
random direction and let it continue the task from there. The new position could
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Table F.2: Results of the pushing task for standard behavioral cloning policy with and
without the proposed recovery. The models are compared in their ability of inserting the
tip of the gripper within the manipulated object correctly and pushing it towards the
target.

Push

Model Complete
BC 20%
BC with Recovery 25%

be outside of the training distribution, making the imitation learning policy behave
randomly. The recovery policy instead can climb back to the training manifold and
continue with the task normally. The object is initialized in a position where the
imitation learning agent is able to complete the task. As shown in Table F.1, the
learned policy suffers considerably from this kind of perturbations. On the other
hand, when coupled with the proposed recovery it can always get back in and most
of the time complete the task.

F.5.5 Pushing Experiment

The second set of experiments involves the same environment with unchanged dy-
namics. The goal is for the agent to insert the gripper’s tip into the manipulated
object and push it all the way towards the target object. In this experiment, the
gripper is always closed. Because the robotic arm moves in the same way and
only the manipulated object is moved throughout the roll-outs, the encoder can be
used without retraining. Both the imitation learning policy and the density esti-
mator have to be retrained on the new demonstrations. For this experiment, a new
dataset of 60 demonstrations is collected for a total of 3895 steps. Results in Table
F.2 show that the encoder can be used without retraining and that the recovery
policy increases the performances of the learned policy.

F.6 Conclusions and Future Work

We proposed to couple an agent learned on experts’ demonstrations with a recovery
policy to keep it within the training data. This is achieved by explicitly modeling
the training distribution with a density estimator and bypassing the agent’s action
whenever the current state is detected to be OOD. By training an encoder to be
equivariant to the agent’s actions, the recovery policy can be formulated as a form
of gradient ascent on the density estimate.
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We applied the proposed methodology to a robotic manipulator whose actions
correspond to Euclidean translations. As a possible extension, more complex ac-
tions could be considered such as rotations of joins and end-effectors. This would
involve Lie groups beyond the Euclidean space such as the group of rotations SO(n),
n = 2, 3. A further extension of the framework lies in designing more complex recov-
ery strategies than pure gradient ascent in order to smooth the resulting movement.
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Harmonics of Learning:
Universal Fourier Features

Emerge in Invariant Networks

Giovanni Luca Marchetti, Christopher Hillar, Danica Kragic,
Sophia Sanborn

Abstract

In this work, we formally prove that, under certain conditions, if a neural
network is invariant to a finite group then its weights recover the Fourier
transform on that group. This provides a mathematical explanation for the
emergence of Fourier features – a ubiquitous phenomenon in both biological
and artificial learning systems. The results hold even for non-commutative
groups, in which case the Fourier transform encodes all the irreducible unitary
group representations. Our findings have consequences for the problem of
symmetry discovery. Specifically, we demonstrate that the algebraic structure
of an unknown group can be recovered from the weights of a network that
is at least approximately invariant within certain bounds. Overall, this work
contributes to a foundation for an algebraic learning theory of invariant neural
network representations.

G.1 Introduction and Related Work

Artificial neural networks trained on natural data exhibit a striking phenomenon:
regardless of exact initialization, dataset, or training objective, models trained on
the same data domain frequently converge to similar learned representations [2].
For example, the early layer weights of diverse image models tend to converge to

G1
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Figure G.1: Emergent Circular Harmonics. Weights learned by a neural network
trained for invariance to planar rotations resemble circular harmonics. Data from [1].

Gabor filters and color-contrast detectors [3]. Remarkably, many of these same fea-
tures are observed in the visual cortex [4–6], suggesting a form of representational
universality that transcends biological and artificial substrates. While such findings
are empirically well-established in the mechanistic interpretability literature [7], the
field lacks theoretical explanations.

Spatially localized versions of canonical 2D Fourier basis functions, such as
Gabor filters or wavelets, are perhaps the most frequently observed universal fea-
tures in image models. They commonly arise in the early layers of vision models
– trained with efficient coding [8,9], classification [3], temporal coherence [10], and
next-step prediction [11] objectives – as well as in the primary visual cortices of
diverse mammals – including cats [12], monkeys [13], and mice [14]. Non-localized
Fourier features have been observed in networks trained to solve tasks that permit
cyclic wraparound – for example, modular arithmetic [15], more general group com-
positions [16], or invariance to the group of cyclic translations [1]. In the domain
of spatial navigation, the so-called grid cells of the entorhinal cortex [17] display
periodic firing patterns at different spatial frequencies as they build a map of space.
Their response properties are naturally modeled with the harmonics of the twisted
torus [18–20]. Similar features also emerge in artificial neural networks trained to
solve spatial navigation tasks [21,22]. The ubiquity of these features across diverse
learning systems is both striking and unexplained.

In this work, we provide a mathematical explanation for the emergence of
Fourier features in learning systems such as neural networks. We argue that the
mechanism responsible for this emergence is the downstream invariance of the
learner to the action of a group of symmetries (e.g. planar translation or rotation).
Since natural data typically possess symmetries, invariance is a fundamental bias
that is injected both implicitly and sometimes explicitly into learning systems [23].
Motivated by this, we derive theoretical guarantees for the presence of Fourier fea-
tures in invariant learners that apply to a broad class of machine learning models.
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Our results rely on the inextricable link between harmonic analysis and group
theory [24]. The standard discrete Fourier transform is a special case of more
general Fourier transforms on groups, which can be defined by replacing the stan-
dard basis of harmonics by irreducible unitary group representations. The latter
are equivalent to the familiar definition for cyclic or, more generally, commutative
groups, but are more involved for non-commutative ones. In order to accommo-
date both the scenarios, we develop a general theory that applies, in principle, to
arbitrary finite groups.

This work represents an attempt to provide mathematical grounding for a gen-
eral algebraic theory of representation learning, while addressing the universality
hypothesis for neural networks [3, 25]. A suite of earlier theoretical works [26–28]
established such universality for sparse coding models [8], deriving the conditions
under which a network will recover the original bases that generate data through
sparse linear combinations. In this case, the statistics of the data determine the
uniqueness of the representation. Our findings, on the other hand, are purely alge-
braic, since they rely exclusively on the invariance properties of the learner. Given
the centrality of invariance to many machine learning tasks, our theory encom-
passes a broad class of scenarios and neural network architectures, while providing
a new perspective on classical neuroscience [12, 29]. As such, it sets a foundation
for a learning theory of representations in artificial and biological neural systems,
grounded in the mathematics of symmetry.

G.1.1 Overview of Results

In this section, we provide a non-technical overview of the theoretical results pre-
sented in this work. Our main result can be summarized as follows.

Informal Theorem G.1.1 (Theorem G.3.1 and Corollary G.3.2). If φ(W,x) is a
parametric function of a certain kind that is invariant in the input variable x to the
action of a finite group G, then each component of its weights W coincides with a
harmonic of G up to a linear transformation. In particular, when the weights are
orthonormal, W coincides with the Fourier transform of G up to linear transfor-
mations.

In the above, the term ‘harmonic’ refers to an irreducible unitary representa-
tion of G. Indeed, one-dimensional unitary representations correspond to homo-
morphisms with the unit circle U(1) ⊆ C, which is reminiscent of the classical
definition via the imaginary exponential. However, non-commutative groups can
have higher-dimensional irreducible representations, intuitively meaning that har-
monics are valued in unitary matrices. In this case, the components of W can be
interpreted as capsules in the sense of [30] i.e., neural units processing matrix-valued
signals.
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We show that the hypothesis on φ in Theorem G.1.1 is satisfied by several ma-
chine learning models from the literature. In particular, the theorem applies to
the recently-introduced (Bi)Spectral Networks [1], to single fully-connected layers
of McCulloch-Pitts neurons, and, to an extent, to traditional deep networks. Since
harmonic analysis is naturally formalized over the complex numbers, we consider
models with complex weights W , which fits into the larger program of complex-
valued machine learning [31–33].

The group-theoretical Fourier transform encodes the entire group structure of
G. Therefore, as a consequence of Theorem G.1.1 the multiplication table of G
can be recovered from the weights W of an invariant parametric function φ – a
fact empirically demonstrated in [1]. This addresses the question of symmetry dis-
covery – an established machine learning problem aiming to recover the unknown
group of symmetries of data with minimal supervision and prior knowledge [34–36].

Since the multiplication table is a discrete object, it is expected that the invari-
ance constraint on φ can be loosened while still recovering the group correctly. To
this end, we prove the following.

Informal Theorem G.1.2 (Theorem G.3.6). If φ(W,x) is ‘almost invariant’ to
G according to certain functional bounds and the weights are ‘almost orthonormal’,
then the multiplicative table of G can be recovered from W .

Lastly, we implement a model satisfying the requirements of our theory and
demonstrate its symmetry discovery capabilities. To this end, we train it via con-
trastive learning on an objective encouraging invariance and extract the multiplica-
tive table of G from its weights. Our Python implementation is available at a public
repository 1.

G.2 Mathematical Background

We begin by introducing the fundamental concepts from harmonic analysis and
group theory used in this paper. For a complete treatment, we refer the reader
to [24].

G.2.1 Groups and Actions
A group is an algebraic object whose elements represent abstract symmetries, which
can be composed and inverted.

Definition G.2.1. A group is a set G equipped with a composition map G×G → G
denoted by (g, h) 7→ gh, an inversion map G → G denoted by g 7→ g−1, and a
distinguished identity element 1 ∈ G such that for all g, h, k ∈ G:

1https://github.com/sophiaas/spectral-universality

https://github.com/sophiaas/spectral-universality
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Associativity Inversion Identity
g(hk) = (gh)k g−1g = gg−1 = 1 g1 = 1g = g

A map ρ : G → G′ between groups is called a homomorphism if ρ(gh) = ρ(g)ρ(h)
for all g, h ∈ G.

Examples of groups include the permutations of a set and the general linear
group GL(V ) of invertible operators over a vector space V , both equipped with the
usual composition and inversion of functions. A further example that will be rele-
vant in this work is the unitary group U(V ) ⊆ GL(V ) associated to a Hilbert space
V , consisting of operators U satisfying UU† = I, where † denotes the conjugate
transpose and I is the identity matrix. Groups satisfying gh = hg for all g, h ∈ G
are deemed commutative.

The idea of a space X having G as a group of symmetries is abstracted by the
notion of group action.

Definition G.2.2. An action by a group G on a set X is a map G × X → X
denoted by (g, x) 7→ g · x, satisfying for all g, h ∈ G, x ∈ X :

Associativity Identity
g · (h · x) = (gh) · x 1 · x = x

A map φ : X → Z between sets acted upon by G is called equivariant if
φ(g · x) = g · φ(x) for all g ∈ G, x ∈ X . It is called invariant if moreover G acts
trivially on Z or, explicitly, if φ(g · x) = φ(x).

In general, the following actions can be defined for arbitrary groups: G acts on
any set trivially by g·x = x, and G acts on itself seen as a set via (left) multiplication
by g · h = gh. Further examples are GL(V ) and U(V ) acting on V by evaluating
operators.

G.2.2 Harmonic Analysis on Groups
Harmonic analysis on groups [37] generalizes standard harmonic analysis. We focus
here on finite groups for simplicity, which are sufficient for practical applications.
This avoids technicalities such as integrability conditions and continuity issues aris-
ing for infinite groups. We start by considering commutative groups and cover
non-commutative ones in Section G.2.3.

Let G be a finite commutative group of order |G|. Denote by ⟨G⟩ = CG the free
complex vector space generated by G. Intuitively, an element x = (xg)g∈G ∈ ⟨G⟩
represents a complex-valued signal over G. The space ⟨G⟩ is endowed with the
convolution product,

(x ⋆ y)g =
∑
h∈G

xhyh−1g, (G.1)
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and is acted upon by G via g · x = δg ⋆ x = (xg−1h)h∈G, where δg is the canonical
basis vector.

Definition G.2.3. The dual G∨ of G is the set of homomorphisms ρ : G → U(1),
where U(1) ⊆ C is the group of unitary complex numbers equipped with multipli-
cation. It is itself a group when equipped with pointwise composition (ρµ)(g) =
ρ(g)µ(g).

A homomorphism ρ ∈ G∨ intuitively represents a harmonic over G, generalizing
the familiar notion from signal processing. If we endow ⟨G⟩ with the canonical scalar
product ⟨x, y⟩ =

∑
g∈G xgyg, then G∨ ⊆ ⟨G⟩ forms an orthogonal basis with all the

norms equal to |G|. The linear base-change is, by definition, the Fourier transform
over ⟨G⟩:

Definition G.2.4. The Fourier transform is the map ⟨G⟩ → ⟨G∨⟩, x 7→ x̂, defined
for ρ ∈ G∨ as:

x̂ρ = ⟨ρ, x⟩. (G.2)

The Fourier transform is a linear isometry or, equivalently, a unitary operator,
up to a multiplicative constant of |G|. Moreover, it exchanges the convolution
product ⋆ over ⟨G⟩ with the Hadamard product ⊙ over ⟨G∨⟩. Definition G.2.4
generalizes the usual discrete Fourier transform in the following sense. For an
integer d > 0, consider the cyclc group Cd with d elements. Concretely G = Z/dZ ≃
Cd is the group of integers modulo d equipped with addition as composition. The
dual G∨ consists of homomorphisms of the form:

Z/dZ ∋ g 7→ e2π
√

−1gk/d, (G.3)

for k ∈ {0, · · · , d − 1}. Equation G.2 specializes then to the familiar definition of
the Fourier transform.

G.2.3 Non-Commutative Harmonic Analysis

So far, we have assumed that G is commutative. In this section we briefly discuss
the extension of Fourier theory to non-commutative groups. This however requires
more elaborate theoretical tools, which we now introduce. To begin with, in order
to perform harmonic analysis on general groups it is necessary to discuss unitary
representations. The latter will play the role of matrix-valued harmonics.

Definition G.2.5. A unitary representation of G is an action by G on a finite-
dimensional Hilbert space V via unitary operators or, in other words, a homomor-
phism ρV : G → U(V ). A unitary representation is said to be irreducible if V does
not contain any non-trivial2 sub-representations.

2The trivial sub-representations of V are 0 and V .
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We denote by Irr(G) the set of all irreducible representations of G up to iso-
morphism. Moreover, for a vector space V we denote by End(V ) the space of its
linear operators.

Definition G.2.6. The Fourier transform is the map ⟨G⟩ →
⊕

ρV ∈Irr(G) End(V ),
x 7→ x̂, defined for ρV ∈ Irr(G) as:

x̂ρV
=
∑
g∈G

ρV (g)†xg ∈ End(V ). (G.4)

This generalizes Definition G.2.4 since for a commutative group, ρV is irre-
ducible if, and only if, dim(V ) = 1. Analogously to the commutative setting, the
Fourier transform exchanges the convolution product ⋆ with the point-wise oper-
ator composition, which we still denote by ⊙. Moreover, the Fourier transform
is a unitary operator up to a multiplicative constant of |G| with respect to the
normalized Hilbert-Schmidt scalar product on End(V ), given by:

⟨A,B⟩ = dim(V ) tr(A†B). (G.5)

The norm associated to the Hilbert-Schmidt scalar product is the Frobenius
norm. The relations between irreducible unitary representations coming from the
unitarity of the Fourier transform are known as Schur orthogonality relations.

G.3 Theoretical Results

We now present the primary theoretical contributions of this work. Concretely,
we demonstrate that if certain parametric functions are invariant to a group then
their weights must almost coincide with harmonics, i.e. irreducible unitary group
representations. We start by introducing general algebraic notions and principles,
and then proceed to specialize them to machine learning scenarios.

Let G be a finite group, H be a set, and V1, · · · , Vk be complex finite-dimensional
Hilbert spaces. In what follows, we will consider the space,

W = ⟨G⟩ ⊗
⊕

i

End(Vi) ≃
⊕

i

End(Vi)⊕G. (G.6)

W is a Hilbert space when endowed with the scalar product given by the product
of the canonical scalar product over ⟨G⟩ and the normalized Hilbert-Schmidt scalar
products over End(Vi) (see Equation G.5). For W ∈ W, we will denote each of
its components as Wi = (Wi(g))g ∈ End(Vi)⊕G. Moreover, we will often interpret
elements W ∈ W as linear maps ⟨G⟩ →

⊕
i End(Vi) via W (x) =

∑
g∈G W (g)xg

for x ∈ ⟨G⟩, where W (g) = (Wi(g))i. Note that G acts on the left tensor factor
of W while for each i, U(Vi) acts on the right tensor factor of ⟨G⟩ ⊗ End(Vi) by
composition of operators.
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Definition G.3.1. We say that a map φ : W → H has unitary symmetries if for
W,W ′ ∈ W of the same norm, φ(W ) = φ(W ′) implies that for each i there exists
a unitary operator Ui ∈ U(Vi) such that Wi = Ui ·W ′

i .

In the context of machine learning, H will represent the hypothesis space, con-
sisting of functions the model can learn. On the other hand, φ will represent
the parametrization of such hypotheses, with its domain W being the space of
weights. The component ⟨G⟩ of W will be responsible for parametrizing the in-
put space, while each component End(Vi) will represent a computational unit, i.e.
a complex-valued neuron in the language of neural networks. For commutative
groups, we simply have Vi = C ≃ End(Vi). In general, End(Vi) can be thought of
as parametrizing matrix-valued signals, which, as mentioned in Section G.1.1, are
computed by neural units sometimes referred to as capsules [30].

The following is an abstract algebraic principle at the core of this work.

Theorem G.3.1. Suppose that φ : W → H has unitary symmetries and that for
some W ∈ W the following holds:

• φ(g ·W ) = φ(W ) for all g ∈ G.

• W , seen as a linear map ⟨G⟩ →
⊕

i End(Vi), is surjective.

Then for every i there exist W ′
i ∈ End(Vi) and an irreducible unitary representation

ρi : G → U(Vi) such that for all g ∈ G,

Wi(g) = W ′
iρi(g)†. (G.7)

Proof. Since φ has unitary symmetries and ∥g ·W∥ = ∥W∥, it follows that for every
g ∈ G and every i there exists ρi(g) ∈ U(Vi) such that

g ·Wi = ρi(g) ·Wi. (G.8)

In particular, by considering the component with index 1 ∈ G on both sides of
Equation G.8, we see that Wi(g−1) = Wi(1) ρi(g). We wish to show that ρi is a
homomorphism. To this end, for all g, h ∈ G it holds that

ρi(gh) ·Wi = (gh) ·Wi = g · (ρi(h) ·Wi) = ρi(h) · (g ·Wi) = (ρ(g)ρ(h)) ·Wi. (G.9)

By the surjectivity hypothesis, the set {Wi(g)}g∈G generates End(Vi) as a vector
space. Therefore, Equation G.9 implies that ρi(gh) = ρi(g)ρi(h), as desired. Lastly,
note that ρi is irreducible by the sujectivity assumption. Indeed, a nontrivial linear
subspace of Vi fixed by ρi(g) for all g would be sent by Wi(g) into a fixed proper
subspace due to Equation G.8. This contradicts the surjectivity of Wi.

Note that the surjectivity assumption implies the constraint
∑

i dim(Vi)2 ≤ |G|.
As a consequence of the result above, the full Fourier transform arises with an
additional orthogonality assumption.
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Corollary G.3.2. Suppose that φ : W → H has unitary symmetries and that for
some W ∈ W the following holds:

• φ(g ·W ) = φ(W ) for all g ∈ G.

• W is unitary up to a multiplicative constant, i.e. W †W = |G|I.

Then W is the Fourier transform up to composing each of the components Wi by
an operator with Frobenius norm equal to 1.

Proof. Note that the unitarity assumption above implies the surjectivity assump-
tion from Theorem G.3.1. Therefore, it follows that for every i, there exists an
irreducible unitary representation ρi : G → U(Vi) such that Wi(g) = Wi(1) ρi(g)†.
We wish to show that if i ̸= j then ρi and ρj are non-isomorphic representations.
If not, the orthogonality assumption implies that

0 =
∑
g∈G

Wi(g) ⊗Wj(g) =
∑
g∈G

(
Wi(1) ⊗Wj(1)

) (
ρi(g)⊤ ⊗ ρj(g)†) = (G.10)

= |G| Wi(1) ⊗Wj(1), (G.11)

where ⊤ denotes the transpose and where the last identity follows from the Schur
orthogonality relations. But then Wi(1) or Wj(1) is vanishing, which contraddicts
the unitarity assumption.

Lastly, in order to compute the Frobenius norm of Wi(1), note that

|G| ∥Wi(1)∥2 =
∑
g∈G

∥Wi(g) ρi(g)∥2 =
∑
g∈G

∥Wi(g)∥2 = |G|, (G.12)

from which ∥Wi(1)∥ = 1 follows.

Again, the orthogonality assumption implies that V1, · · · , Vk are the ambient
Hilbert spaces of all the irreducible unitary representations of G up to isomor-
phism, and in particular

∑
i dim(Vi)2 = |G|.

We now wish to discuss the other crucial assumption of Theorem G.3.1 requiring
that φ(g · W ) = φ(W ) for all g ∈ G, which is reminiscent of invariance. However,
when H is a space of functions, we are typically interested in models that are
invariant in the input variable rather than the weight variable. Therefore, we
introduce the following condition, aimed at reconciling inputs and weights. To this
end, suppose that H is a set of functions X → Y, where X is a set acted upon by G
and Y is a set. We adhere to the notation φ(W,x) = φ(W )(x), x ∈ ⟨G⟩, W ∈ W,
for simplicity.

Definition G.3.2. We say that φ satisfies the adjunction property if

φ(W, g · x) = φ(g−1 ·W,x) (G.13)

for all x ∈ X , g ∈ G.
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The adjunction property implies that if φ(W,x) is invariant in x, then φ(g ·
W,x) = φ(W,x) for all x, g, recovering the assumption of Theorem G.3.1.

Remark G.3.1. As explained above, the tensor component ⟨G⟩ of W typically rep-
resents the input space of a given machine learning model. One can consider the
more general scenario when data consist of complex signals over a finite set S acted
upon by G, therefore replacing ⟨G⟩ = CG by CS . This is the case, for example,
for data consisting of images acted by the cyclic group via rotations, since the in-
put space cannot be identified with signals over G. Assuming the action over S is
free, meaning that g · s = s implies g = 1, S can be decomposed into copies of G
deemed orbits. Specifically, there is an equivariant isomorphism S ≃ G ⊔ · · · ⊔ G,
which in turn induces a linear isomorphism CS ≃ ⟨G⟩⊕p, where p is the number of
orbits. The results from this section can be extended to this scenario by applying
all the arguments to the copies of ⟨G⟩ separately, each of which will serve as a
domain for its set of irreducible unitary representations. When the action is not
free, it is necessary to take into account stabilizers, i.e. g ∈ G such that g · s = s
for some s ∈ S. Roughly speaking, we expect that the results from this section
can be adapted to an extent, obtaining unitary representations ‘up to stabilizers’.
However, the precise meaning of the latter has yet to be clarified, and goes beyond
the scope of this work.

G.3.1 Examples

In this section, we provide examples of machine learning models with unitary sym-
metries. As anticipated, in the context of machine learning H and W represent the
hypothesis space and the parameter space, respectively. Indeed, in what follows H
will consist of functions of the form ⟨G⟩ → Y for some codomain Y, and we will
adhere to the notation from Definition G.3.2 accordingly. All the models considered
in this section satisfy the adjunction property.

Spectral Networks

We start by considering Spectral Networks – a class of polynomial machine learning
models that inspired this work—and to which our theory applies naturally. These
models were introduced by [1] in cubic form based on the invariant theory of ⟨G⟩ (see
Section G.6.2 in the Appendix for an overview of the latter). The overall idea behind
Spectral Networks is to approximate the n-order polynomial invariants (deemed
spectral invariants) of ⟨G⟩ for an unknown group G. Specifically, suppose that
V1, · · · , Vk are the ambient Hilbert spaces of the irreducible unitary representations
of G. Given a multi-index i = (i1, · · · , in) ∈ {1, · · · , k}n, The Spectral Network of
order n is defined as the collection of parametric maps φi(W, ·) : ⟨G⟩ → End(Vi1 ⊗
· · · ⊗ Vin

):

φi(W,x) = Wi1(x) ⊗ · · · ⊗Win
(x)

(
W †

i1
⊙ · · · ⊙W †

in

)
(x), (G.14)
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where W = ⊕iWi ∈ W = ⟨G⟩ ⊕i ⊗End(Vi), ⊙ denotes the G-wise tensor product
of operators, and x denotes the component-wise conjugate of x. For a commutative
G, since Vi = C for all i, the above expression reduces to:

φi(W,x) = Wi1x · · · Winx Wi1 ⊙ · · · ⊙Win x. (G.15)

For n = 1 Spectral Networks are deemed Power-Spectral Networks, and for a com-
mutative G they take the form φi(W,x) = |Wix|2. The latter can be simply in-
terpreted as a linear model followed by an activation function. Even though the
squared absolute value is uncommon as an activation function in machine learning,
it has appeared in models of biological neural networks [38].

For simplicity, we will consider only the Spectral Networks involving a single
unitary representation; that is, we will focus on constant multi-indices i = (i, · · · , i)
in Equation G.14. To this end, let V be a finite-dimensional Hilbert space and H be
the set of functions ⟨G⟩ → End(V ⊗n) for some n ∈ N. We set W = ⟨G⟩ ⊗ End(V ).

Proposition G.3.3. Consider the Spectral Network, given by:

φ(W,x) = W (x)⊗n W †⊙n(x). (G.16)

Then φ has unitary symmetries.

We refer to the Appendix for a proof.

McCulloch-Pitts Neurons and Deep Networks

While Spectral Networks provide the most direct application of our theory, in this
section we discuss the most common and fundamental neural network primitives in
deep learning: the fully-connected McCulloch-Pitts neuron [39] and the deep neural
network. We consider models with complex coefficients and focus on commutative
groups, i.e. all the Hilbert spaces Vi from Definition G.3.1 will be equal to C.

A McCulloch-Pitts neuron has the form φ(W,x) = σ(Wx), where σ : C → Y is
a map playing the role of an activation function and W ∈ W = ⟨G⟩ is the weight
vector. For σ(z) = |z|2, the McCulloch-Pitts neuron reduces to a commutative
Power-Spectral Network i.e., a Spectral Network with n = 1. The hypothesis space
H consists of functions ⟨G⟩ → Y.

Proposition G.3.4. Consider a map σ : C → Y and let φ(W,x) = σ(Wx). Sup-
pose that 0 ∈ C is isolated in its fiber of σ, i.e. there exists an open subspace O ⊆ C
such that σ−1(σ(0)) ∩O = {0}. Then φ has unitary symmetries.

We refer to the Appendix for a proof. The above assumption on σ is satisfied by
popular activations functions from neuroscience and machine learning, such as the
sigmoid and the leaky Rectified Linear Unit (ReLU), applied after taking complex
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absolute value.

Next, we discuss the case of classical deep networks. We model the latter as
φ(W,x) = χ(|W (x)|2), where W ∈ W = ⟨G⟩ ⊗ Ck and | · | denotes the component-
wise absolute value. Here, k is the number of neurons in the first hidden layer of
the network, while χ : Rk

≥0 → R is the head of the network, encompassing all the
layers after the first one. Note that since typical neural networks are real-valued,
we combine real and complex models. Namely, the first layer of φ is complex, and
its output is fed into the real head χ by taking squared absolute values.

Differently from Section G.3, for the next result we will restrict W to the sub-
space of ⟨G⟩ ⊗ Ck consisting of W such that the components Wi are orthonormal.
This implies, in particular, the constrain k ≤ |G|. Note that W is closed by the
actions of G and U(C). The orthonormality condition is anyway necessary in order
to recover the full Fourier transform, as stated in Corollary G.3.2.

Proposition G.3.5. Suppose that there is an open subspace O ⊆ Rk
≥0 containing

0 where χ is affine with distinct non-vanishing coefficients i.e., χ(z) =
∑

i aizi + b
for z ∈ O with 0 ̸= ai ̸= aj for i ̸= j. Then φ(W,x) = χ(|W (x)|2) has unitary
symmetries.

We refer to the Appendix for a proof. Since typical (real-valued) deep neural
networks have piece-wise linear activations functions such as (leaky) ReLU, they
define piece-wise affine maps and therefore are affine when restricted to appropriate
open subspaces. Moreover, the hypothesis on the coefficients ai in Proposition G.3.5
is generic, meaning that it defines an open dense subset of (a1, · · · , ak) ∈ Rk.

G.3.2 Group Recovery
Corollary G.3.2 allows us to recover the group structure of G up to isomorphism
from the weights of a map with unitary symmetries. In other words, this enables
the recovery of an unknown group in a data-driven manner from the weights of an
invariant machine learning model, addressing the problem of symmetry discovery
discussed in Section G.1.1. The procedure was originally suggested and validated
empirically in [1].

To this end, assume that φi satisfies the requirements of Corollary G.3.2. More-
over, we introduce the additional assumption that Wi(1) = I ∈ End(Vi) for all i.
If that is the case, W coincides exactly with the Fourier transform by Corollary
G.3.2. This implies that the multiplication table of G can be recovered by:

gh = argmin
l∈G

∥W (g) ⊙W (h) −W (l)∥, (G.17)

where ⊙ denotes the Hadamard product i.e., component-wise operator composition.
Note that this notation has a different meaning here than in Section G.3.1. Since



G.3. THEORETICAL RESULTS G13

the W (g)’s are orthogonal, the only possible values for the norms over which the
minimum is performed are 0 and

√
2|G|.

The multiplication table of G is a discrete object, while the weights W ∈ W can
vary continuously. Therefore, it is natural to expect that the invariance condition
(g · W = W for all g ∈ G) can be relaxed, while still recovering the multiplication
table correctly. In what follows, we analyze relaxations of invariance and give
bounds in which the group recovery algorithm holds. We start by introducing a
quantity measuring how close a map is to having unitary symmetries. To this end,
we assume that H is a metric space with distance function ∆ : H × H → R≥0.

Definition G.3.3. Given a map φ : W → H, its unitarity defect is defined for
δ ∈ R>0 as:

ωφ(δ) = sup
W,W ′∈W

∥W ∥=∥W ′∥
∆(φ(W ),φ(W ′))≤δ

max
i

inf
U∈U(Vi)

∥Wi − U ·W ′
i ∥, (G.18)

Note that φ has unitary symmetry if, and only if, ωφ(0) = 0. The following is
our main relaxation result.

Theorem G.3.6. Suppose that φ : W → H is a map and fix W ∈ W. Denote

L = ∥W †W − |G|I∥∞, (G.19)

where ∥ · ∥∞ is the uniform Frobenius norm for G×G matrices. Suppose that the
following holds:

• For all g ∈ G:

ωφi
(∆(φ(g ·W ), φ(W ))) <

√
1
2 − L

|G|√
|G| + L+ 1

(G.20)

• L ≤ |G|
2 .

• Wi(1) = I ∈ End(Vi) for all i.

Then Equation G.17 holds, i.e. the group recovery algorithm is correct.

Proof. Firstly, the definition of L implies the inequalities |G| − L ≤ ∥W (g)∥2 ≤
|G| + L and |⟨W (g),W (h)⟩| ≤ L for all g, h ∈ G. In particular,

∥W (g)−W (h)∥2 = ∥W (g)∥2 +∥W (h)∥2 −2Re(⟨W (g),W (g)⟩) ≥ 2|G|−4L. (G.21)

By hypothesis, for each i and g ∈ G there exists ρi(g) ∈ U(Vi) such that

∥g−1 ·Wi − ρi(g) ·Wi∥ <

√
1
2 − L

|G|√
|G| + L+ 1

. (G.22)
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In particular, ∥Wi(gh)−ρi(g)Wi(h)∥ is bounded by the same quantity for all g, h ∈
G. Therefore, via the triangle inequality we see that:

∥Wi(g)Wi(h) −Wi(gh)∥ ≤ (G.23)
≤∥Wi(h)Wi(g) − ρi(g)Wi(h)∥ + ∥Wi(gh) − ρi(g)Wi(h)∥ = (G.24)
= ∥Wi(h)∥︸ ︷︷ ︸

≤
√

|G|+L

∥Wi(g) − ρi(g)Wi(1)∥ + ∥Wi(gh) − ρi(g)Wi(h)∥ < (G.25)

<

√
1
2 − L

|G|
. (G.26)

Equation G.23 implies that

∥W (g) ⊙W (h) −W (gh)∥ <
√

|G|

√
1
2 − L

|G|
=
√

2|G| − 4L
2 . (G.27)

Since ∥W (p) − W (q)∥ ≥
√

2|G| − 4L for all p ̸= q ∈ G, W (g) ⊙ W (h) is closer to
W (gh) than to any other W (q) for q ∈ G, which immediately implies the desired
result.

The assumption on L in the above result is a relaxation of the unitarity as-
sumption in Corollary G.3.2 since L = 0 if, and only if, W is unitary up to a
multiplicative constant.

We provide an explicit bound for the unitarity defect of the McCulloch-Pitts
neurons discussed in Section G.3.1. To this end, let H be the space of continuous
functions defined on the unit sphere in ⟨G⟩ equipped with the uniform metric (i.e.,
the L∞ distance) as ∆.

Proposition G.3.7. Let W ∈ ⟨G⟩ and consider φ(W,x) = σ(Wx). Suppose that
the activation function σ : C → C is continuous and satisfies the following coercivity
condition: there exist constants C ∈ R>0, n ∈ N such that for every x ∈ C:

|σ(0) − σ(x)| ≥ C |x|n. (G.28)

Then the unitarity defect of φ satisfies for δ < C:

ωφ(δ) ≤

√√√√√2

1 −

√
1 −

(
δ

C

) 2
n

. (G.29)

We refer to the Appendix for a proof. Note that the coercivity condition from
above plays the role of the assumption on σ from Proposition G.3.4.
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C6 ≃ C2 × C3 C2 × C2 × C2 D3 ≃ S3

Figure G.2: Learned Group Multiplication Tables. Tables inferred by Power-
Spectral Networks for the groups C6 (commutative), C2 × C2 × C2 (commutative), and
D3 (non-commutative). Rows and columns are labeled with integers that index group
elements. Each cell of the table contains the index of the group element obtained by
composing the group elements indexed in the row and column. Note that the table is a
symmetric matrix if, and only if, the group is commutative.

Implementation

We now empirically explore the theory developed in this paper and demonstrate
that Spectral Networks are able to recover the group structure in practice. To
this end, we implement a non-commutative Power-Spectral Network φi(W,x) =
Wix W

†
i x with weights W ∈ Cdi×di×d, where d = |G| is the cardinality of the given

group and d1, · · · , dk are the dimensions of its irreducible unitary representations.
As discussed at the beginning of Section G.3.2, we force Wi(1) = I ∈ Cdi×di , where
the index 1 is arbitrarily chosen.

Following [1], we train the model via contrastive learning [40]. Namely, given a
finite dataset D of pairs (x, y), where x, y ∈ ⟨G⟩ ≃ Cd and x = g ·y for an unknown
g ∈ G, the objective optimized by the model is:

L(W ) =
∑

(x,y)∈D

∑
i

∥φi(W,x) − φi(W, y)∥2 + η ∥dI −WW †∥2, (G.30)

where η > 0 is a hyper-parameter and ∥ · ∥ is the Frobenius norm. The first term
in Equation G.30 encourages invariance with respect to G while the second one
encourages W to be unitary.

The model is trained via the Adam optimizer [41], which interprets the complex
weights as real tensors of doubled dimensionality. The dataset D ⊆ ⟨G⟩ ⊕ ⟨G⟩ is
generated procedurally by first sampling x from a standard Gaussian distribution
over ⟨G⟩ ≃ R2d, then sampling g ∈ G uniformly, and finally producing the data-
point (x, y = g · x) ∈ D. We provide a Python implementation of both the model
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and the experiments at a public repository (see Section G.1.1). The code is avail-
able in both the PyTorch [42] and the JAX [43] frameworks.
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Figure G.3: Group Recovery Accuracy. Accuracy for the recovery of the group
multiplication tables across 20 training runs as the amount of noise injected into data
increases. The transition from 1.0 to 0.0 accuracy is sharp, and here we visualize only the
noise regions where the values are non-trivial.

Once trained, we evaluate the model by checking whether the multiplication
table M ∈ {1, · · · , d}d×d obtained via the group recovery algorithm described by
Equation G.17 coincides with the one of G. Since there is no canonical order-
ing on G, the table is recovered up to a permutation π of {1, · · · , d} acting as
(π · M)i,j = π(Mπ−1(i),π−1(j)). Therefore, we check whether π · M coincides with
the table of G for all the permutations π. Figure G.2 reports the (correct) multipli-
cation tables obtained at convergence for both commutative and non-commutative
groups. Specifically, we consider the cyclic group C6, the product of cyclic groups
C2 × C2 × C2 and the dihedral group D3, which is isomorphic to the symmetric
group S3.

In order to validate empirically the robustness of the group recovery procedure,
we additionally train the model on data corrupted by white noise, i.e. D consists of
pairs (x, y = g · x+ ϵ), where ϵ is sampled from an isotropic Gaussian distribution.
We vary the standard deviation of the latter and report in Figure G.3 the number
of times the multiplication table is recovered correctly across 20 training runs – a
metric referred to as ‘table accuracy’.

As can be seen, the group structure is recovered most of the times even with
large amounts of noise – up to ∼ 0.5 standard deviation. The performance quickly
degrades as the noise reaches a critical threshold. This demonstrates empirically
that the group recovery procedure is robust to noise, which is in line with the
theoretical bounds from Theorem G.3.6.
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G.4 Conclusions, Limitations, and Future Work

In this work, we proved that if a machine learning model of a certain kind is invari-
ant to a finite group, then its weights are closely related to the Fourier transform on
that group. We discussed how, as a consequence, the algebraic structure of an un-
known group can be recovered from a model that is invariant. We established these
results for both commutative and non-commutative groups, and discussed relaxed
conditions under which the group recovery procedure holds. Our results represent
a first step towards a mathematical explanation of universal features inferred by
both biological and artificial neural networks.

Due to its open-ended nature, this work is subject to a number of limitations
and leaves directions open for future investigation. First, our theory encompasses
models with complex-valued weights, which are non-canonical in machine learning.
Thus, exploring analogues of the theory over real numbers is an interesting direc-
tion that would fit more directly with current practices in the field.

In addition, our theoretical framework encompasses learning models with uni-
tary symmetries. The latter is a technical property satisfied by Spectral Networks
and, to an extent, by traditional deep networks. However, it is not clear what other
models fit into our framework, and whether the notion is general enough to accom-
modate other computational primitives fundamental to machine learning, such as
the attention mechanisms. This is an open question that is worthy of investigation.

Lastly, in this work we focused on groups and their associated harmonics. How-
ever, the representations within neural networks or biological systems often resemble
imperfect, or localized, versions of harmonics, i.e. wavelets, such as Gabors. Since
wavelets do not describe group homomorphisms, our theory would need to be ex-
tended to accommodate this kind of locality. We suspect that this may be achieved
by generalizing the framework to groupoids – an algebraic group-like structure that
formalizes a locally-defined composition. This, however, goes beyond the scope of
our work, and we leave it for future research.
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G.6 Appendix

G.6.1 Proofs of Theoretical Results

Proof of Proposition G.3.3

In order to prove this proposition, we will need some technical facts from matrix
algebra. We start by showing the following uniqueness result.

Lemma G.6.1. Let d′ ≥ d and A,B ∈ Cd′×d. If AA† = BB†, then there exists a
unitary matrix U ∈ Cd×d such that A = BU .

Proof. From the polar decomposition for matrices (see [44, Theorem 3.1.9]), we
know that:

A = PV, B = QW, (G.31)

where P,Q ∈ Cd′×d′ are Hermitian positive semidefinite and V,W ∈ Cd′×d have
orthonormal rows. Also, P 2 = AA† = BB† = Q2 from which it follows that
P = Q by uniqueness of square roots of positive semidefinite Hermitian matrices
(see [45, Theorem 7.2.6]). In particular, we have:

A = PV = QV = QWW †V = BU, (G.32)

with U = W †V unitary.

Remark G.6.1. We note that if A and B are real matrices, then the conclusion
holds with U being a real orthogonal matrix.

Next, we show that positive semidefinite Hermitian matrices possess unique
tensor roots.

Lemma G.6.2. Let A,B ∈ Cd×d be Hermitian and positive semidefinite. If A⊗n =
B⊗n for some n > 0, then A = B.

Proof. From the Spectral Theorem we know that:

A = UDU†, (G.33)

where U is unitary andD is diagonal. From A⊗n = B⊗n it follows thatD⊗n = C⊗n,
where C = U†BU . Note that the (point-wise) Hadamard product of matrices is a
submatrix of the tensor (Kronecker) product. In particular, the off-diagonal entries
of C must vanish. On the diagonal we have (Di,i)n = (Ci,i)n for every i, and
therefore Di,i = Ci,i since they are non-negative. This shows that C = D, implying
that B = UDU† = A.

By putting together the above lemmas, we obtain the following.
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Lemma G.6.3. Let A1, · · · , Ak, B1, · · · , Bk ∈ Cd×d. Suppose that for some n > 0,
for all x ∈ Ck:(∑

i

xiAi

)⊗n (∑
i

xiA
†⊗n
i

)
=
(∑

i

xiBi

)⊗n (∑
i

xiB
†⊗n
i

)
. (G.34)

Then there exists a unitary matrix U ∈ Cd×d such that Ai = BiU for every i.

Proof. By multilinearity of the tensor product we see that for all x ∈ Ck:∑
i1,··· ,in+1

xi1 · · ·xin
xin+1(Ai1 ⊗ · · · ⊗Ain

)A†⊗n
in+1

= (G.35)

=
∑

i1,··· ,in+1

xi1 · · ·xin
xin+1(Ai1A

†
in+1

) ⊗ · · · ⊗ (Ain
A†

in+1
) = (G.36)

=
∑

i1,··· ,in+1

xi1 · · ·x1n
xin+1(Bi1B

†
in+1

) ⊗ · · · ⊗ (Bin
B†

in+1
). (G.37)

Since a polynomial vanishes as function if and only if it is the zero polynomial, it
follows that (Ai1A

†
in+1

) ⊗ · · · ⊗ (Ain
A†

in+1
) = (Bi1B

†
in+1

) ⊗ · · · ⊗ (Bin
B†

in+1
) for all

i1, · · · , in+1, and in particular (AiA
†
j)⊗n = (BiB

†
j )⊗n for all i, j. From Lemma G.6.2

we conclude that AiAj = BiBj for all i, j, which can be rephrased as AA† = BB†,
where A,B are the (dk) × d matrices obtained by concatenating the Ai’s and Bi’s
respectively. From Lemma G.6.1 we conclude that A = BU for a unitary d × d
matrix U , as desired.

Proposition G.3.3 now follows immediately from Lemma G.6.3 by setting Ai =
W (gi) and Bi = W ′(gi) for gi ∈ G and W,W ′ ∈ ⟨G⟩ ⊗ End(V ) of the same norm.

Proof of Proposition G.3.4

Proof. Pick W,W ′ ∈ ⟨G⟩ of the same norm such that φ(W,x) = φ(W ′, x) for all
x ∈ ⟨G⟩. Given the open set O ⊆ C from the hypothesis on σ, consider O′ = {x ∈
⟨G⟩ | Wx,W ′x ∈ O}, which is open and non-empty since 0 ∈ O′. For x ∈ O′,
Wx = 0 implies φ(W,x) = φ(W ′, x) = 0, from which it follows that W ′x = 0
by definition of O. Therefore, W and W ′ share the same orthogonal complement,
implying that W ′ = ρW for some ρ ∈ C. Since W and W ′ have the same norm, we
conclude that ρ ∈ U(C).

Proof of Proposition G.3.5

Proof. Consider W,W ′ ∈ W such that φ(W,x) = φ(W ′, x) for all x ∈ ⟨G⟩.
Given the open set O ⊆ Rk

≥0 from the hypothesis on χ, consider O′ = {x ∈
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⟨G⟩ | |Wx|2, |W ′x|2 ∈ O}, which is open and non-empty since 0 ∈ O′. For x ∈ O′,
φ(W,x) can be written as:

φ(W,x) =
∑

i

ai|Wi x|2 + b, (G.38)

with the ai’s being distinct, and similarly for φ(W ′, x). Since Hermitian forms are
determined by their restriction on an open set, we deduce the following identity of
operators: ∑

i

aiWi ⊗Wi =
∑

i

aiW
′
i ⊗W ′

i . (G.39)

Since both the sets {Wi}i and {W ′
i }i are orthonormal by hypothesis on W, both

sides of Equation G.39 define a spectral decomposition, i.e. a decomposition into
projections over orthonormal vectors. Since the eigenvalues ai are distinct and
non-vanishing, it follows that Wi = ρiW

′
i for some ρi ∈ U(C), as desired.

Proof of Proposition G.3.7

In order to prove this proposition, we will need the following technical fact from
linear algebra.

Lemma G.6.4. Let H be a finite-dimensional complex Hilbert space, v, w ∈ H
normal and ε ∈ R such that 0 < ε < 1. Suppose that for every normal x orthogonal
to w, it holds that |⟨x, v⟩| ≤ ε. Then there exists ρ ∈ U(C) such that

∥v − ρw∥ ≤
√

2
(

1 −
√

1 − ε2
)
. (G.40)

Proof. Consider an orthogonal decomposition v = ⟨w1, v⟩w1 + ⟨w2, v⟩w2, where
w1 ∈ w⊥ is normal and w2 = ρw for some ρ ∈ U(C) such that ⟨w2, v⟩ ∈ R≥0. It
follows that:

1 = ∥v∥2 = |⟨w1, v⟩|2 + ⟨w2, v⟩2. (G.41)

The hypothesis implies then that ⟨w2, v⟩ ≥
√

1 − ε2. Therefore,

∥v − w2∥2 = 2 − 2⟨w2, v⟩ ≤ 2
(

1 −
√

1 − ε2
)
, (G.42)

as desired.

Remark G.6.2. Note that the right-hand side of Equation G.40 is bounded by the
concise quantity

√
2ε.

We are now ready to prove Proposition G.3.7.
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Proof. Consider δ ∈ R>0 andW,W ′ ∈ ⟨G⟩ of the same norm such that ∆(φ(W ), φ(W ′)) ≤
δ. The latter and the hypotheses together imply that if x ∈ ⟨G⟩ is normal such
that W ′x = 0, then:

C |Wx|n ≤ |σ(0) − σ(Wx)| ≤ δ. (G.43)

By Lemma G.6.4 there exists ρ ∈ U(C) such that:

∥W − ρW ′∥ ≤

√√√√√2

1 −

√
1 −

(
δ

C

) 2
n

, (G.44)

from which the claim follows.

G.6.2 Spectral Invariants
In this section, we overview the theory of invariants over ⟨G⟩, i.e. (polynomial)
maps ⟨G⟩ → C that are invariant with respect to the action by G. To this end, we
recall the following notion.

Definition G.6.1. Fix n > 0 and ρ = (ρ1, . . . , ρn) ∈ (G∨)n. The spectrum of
order n associated to ρ is defined for x ∈ ⟨G⟩ as:

βρ(x) = x̂ρ1 · · · x̂ρn
x̂ρ1···ρn

(G.45)

The spectra of order n are invariant polynomials of degree n + 1 containing
one conjugate variable. The presence of the latter is necessary for invariance. For
n = 1, 2 they are alternatively referred to as power spectra and bispectra respectively.
Note that the power spectra reduce simply to βρ(x) = |x̂ρ|2, ρ ∈ G∨, and constitute
a standard tool in signal processing. Bispectra, together with higher-order spectra,
were first introduced in [46]. It is immediate to see that spectra generate all the
polynomial invariants of ⟨G⟩ (see also [47, Theorem 2.1.4]).

Proposition G.6.5. The space of polynomial invariants of degree n+ 1 over ⟨G⟩
(with one conjugate variable) is generated as a complex vector space by the spectra
of order n.

Proof. This follows from interpreting the invariance condition via the Fourier trans-
form. Namely, given ρ ∈ (G∨)n+1 consider the monomial over ⟨G∨⟩ defined by
x̂ρ1 · · · x̂ρn

x̂ρn+1 . Since g · x̂ = (ρ(g) x̂λ)λ∈G∨ , the monomial is invariant if and only
if ρ1(g) · · · ρn(g)ρn+1(g) = 1 for all g ∈ G, i.e. ρn+1 = ρ1 · · · ρn. Since monomials
linearly generate polynomials, the claim follows.

A remarkable aspect of spectra of even order is the fact that they jointly de-
termine real (generic) elements of ⟨G⟩ up to the action by G – a property known
as completeness. This was first shown in [48]. For convenience, we report below a
simple proof for finite commutative groups.
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Proposition G.6.6. Fix n even. Suppose that x, y ∈ RG ⊆ ⟨G⟩ are such that
x̂ρ, ŷρ ̸= 0 for all ρ ∈ G∨. If βρ(x) = βρ(y) for all ρ ∈ (G∨)n then x = g · y for
some g ∈ G.

Proof. By setting ρ = (1, · · · , 1) we see that ⟨1, x⟩n+1 = ⟨1, y⟩n+1 ∈ R \ {0} and
therefore ⟨1, x⟩ = ⟨1, y⟩ since n is even. For ρ ∈ G∨, by setting ρ = (ρ, ρ, 1, · · · , 1),
we see that ⟨ρ, x⟩⟨ρ, x⟩⟨1, x⟩n−1 = |⟨ρ, x⟩|2⟨1, x⟩n−1 = |⟨ρ, y⟩|2⟨1, y⟩n−1 and there-
fore |⟨ρ, x⟩| = |⟨ρ, y⟩|. Note that here we relied on the fact that x and y are real.
This implies that the following map η : G∨ → C takes values in U(C):

η(ρ) = ⟨ρ, x⟩
⟨ρ, y⟩

. (G.46)

Now, η(1) = 1 since ⟨1, y⟩ = ⟨1, y⟩. By setting ρ = (ρ, µ, ρµ, 1, · · · , 1) we see
that η(ρ)η(µ) = η(ρµ) for all ρ, µ ∈ G∨ and therefore η ∈ (G∨)∨. Since the
Fourier transform sends G∨ ⊆ ⟨G⟩ to (G∨)∨ ⊆ ⟨G∨⟩, there exists g ∈ G such that
η(ρ) = ρ(g). This means that ⟨ρ, x⟩ = ρ(g)⟨ρ, y⟩, which implies x = g · y by the
equivariance properties of the Fourier transform.

Spectral invariants can be defined in the non-commutative case, but arise sub-
tleties. First, we replace the group structure of G∨ with the tensor product ⊗ of
unitary representations. However, Irr(G) is not closed with respect to ⊗. This is
circumvented by considering Clebsch-Gordan coefficients, i.e. irreducible unitary
sub-representations of tensor products. This leads to the following definition of
operator-valued spectra.

Definition G.6.2. Fix n > 0 and ρ = (ρV1 , · · · , ρVn
) ∈ Irr(G)n. The spectrum of

order n associated to ρ is defined for x ∈ ⟨G⟩ as:

βρ(x) = x̂ρV1
⊗ · · · ⊗ x̂ρVn

(
x̂†

ρT1
⊕ · · · ⊕ x̂†

ρTk

)
∈ End(V1 ⊗ · · · ⊗ Vn) (G.47)

where the direct sum runs over the k irreducible unitary representations appearing
in an orthogonal decomposition V1 ⊗ · · · ⊗ Vn = T1 ⊕ · · · ⊕ Tk.

The completeness of spectra of order n ≥ 2 (Proposition G.6.6) extends to the
non-commutative case [49].



References

[1] S. Sanborn, C. Shewmake, B. Olshausen, and C. Hillar, “Bispectral neural net-
works,” International Conference on Learning Representations (ICLR), 2023.

[2] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft, “Convergent learning:
Do different neural networks learn the same representations?,” arXiv preprint
arXiv:1511.07543, 2015.

[3] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter, “An
overview of early vision in inceptionv1,” Distill, vol. 5, no. 4, pp. e00024–002,
2020.

[4] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s
striate cortex,” The Journal of physiology, vol. 148, no. 3, p. 574, 1959.

[5] C. A. Hass and G. D. Horwitz, “V1 mechanisms underlying chromatic contrast
detection,” Journal of Neurophysiology, vol. 109, no. 10, pp. 2483–2494, 2013.

[6] K. F. Willeke, K. Restivo, K. Franke, A. F. Nix, S. A. Cadena, T. Shinn,
C. Nealley, G. Rodriguez, S. Patel, A. S. Ecker, et al., “Deep learning-driven
characterization of single cell tuning in primate visual area v4 unveils topolog-
ical organization,” bioRxiv, pp. 2023–05, 2023.

[7] T. Räuker, A. Ho, S. Casper, and D. Hadfield-Menell, “Toward transparent ai:
A survey on interpreting the inner structures of deep neural networks,” in 2023
IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
pp. 464–483, IEEE, 2023.

[8] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:
A strategy employed by v1?,” Vision research, vol. 37, no. 23, pp. 3311–3325,
1997.

[9] A. J. Bell and T. J. Sejnowski, “The “independent components” of natural
scenes are edge filters,” Vision research, vol. 37, no. 23, pp. 3327–3338, 1997.

[10] J. Hurri and A. Hyvärinen, “Simple-cell-like receptive fields maximize temporal
coherence in natural video,” Neural Computation, vol. 15, no. 3, pp. 663–691,
2003.

G23



G24 REFERENCES

[11] P.-É. H. Fiquet and E. P. Simoncelli, “Polar prediction of natural videos,”
arXiv preprint arXiv:2303.03432, 2023.

[12] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” The Journal of physiology,
vol. 160, no. 1, p. 106, 1962.

[13] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of
monkey striate cortex,” The Journal of physiology, vol. 195, no. 1, pp. 215–243,
1968.

[14] U. C. Dräger, “Receptive fields of single cells and topography in mouse visual
cortex,” Journal of Comparative Neurology, vol. 160, no. 3, pp. 269–289, 1975.

[15] N. Nanda, L. Chan, T. Liberum, J. Smith, and J. Steinhardt, “Progress
measures for grokking via mechanistic interpretability,” arXiv preprint
arXiv:2301.05217, 2023.

[16] B. Chughtai, L. Chan, and N. Nanda, “A toy model of universality: Re-
verse engineering how networks learn group operations,” arXiv preprint
arXiv:2302.03025, 2023.

[17] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells, and the brain’s
spatial representation system,” Annu. Rev. Neurosci., vol. 31, pp. 69–89, 2008.

[18] A. Guanella, D. Kiper, and P. Verschure, “A model of grid cells based on a
twisted torus topology,” International journal of neural systems, vol. 17, no. 04,
pp. 231–240, 2007.

[19] J. Orchard, H. Yang, and X. Ji, “Does the entorhinal cortex use the fourier
transform?,” Frontiers in computational neuroscience, vol. 7, p. 179, 2013.

[20] R. J. Gardner, E. Hermansen, M. Pachitariu, Y. Burak, N. A. Baas, B. A.
Dunn, M.-B. Moser, and E. I. Moser, “Toroidal topology of population activity
in grid cells,” Nature, vol. 602, no. 7895, pp. 123–128, 2022.

[21] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski, A. Pritzel,
M. J. Chadwick, T. Degris, J. Modayil, et al., “Vector-based navigation us-
ing grid-like representations in artificial agents,” Nature, vol. 557, no. 7705,
pp. 429–433, 2018.

[22] C. J. Cueva and X.-X. Wei, “Emergence of grid-like representations by train-
ing recurrent neural networks to perform spatial localization,” arXiv preprint
arXiv:1803.07770, 2018.

[23] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges,” arXiv preprint
arXiv:2104.13478, 2021.



REFERENCES G25

[24] G. B. Folland, A course in abstract harmonic analysis, vol. 29. CRC press,
2016.

[25] L. Moschella, V. Maiorca, M. Fumero, A. Norelli, F. Locatello, and E. Rodola,
“Relative representations enable zero-shot latent space communication,” arXiv
preprint arXiv:2209.15430, 2022.

[26] G. Isely, C. Hillar, and F. Sommer, “Deciphering subsampled data: adaptive
compressive sampling as a principle of brain communication,” Advances in
neural information processing systems, vol. 23, 2010.

[27] C. J. Hillar and F. T. Sommer, “When can dictionary learning uniquely recover
sparse data from subsamples?,” IEEE Transactions on Information Theory,
vol. 61, no. 11, pp. 6290–6297, 2015.

[28] C. J. Garfinkle and C. J. Hillar, “On the uniqueness and stability of dictionar-
ies for sparse representation of noisy signals,” IEEE Transactions on Signal
Processing, vol. 67, no. 23, pp. 5884–5892, 2019.

[29] W. Pitts and W. S. McCulloch, “How we know universals: The perception of
auditory and visual forms,” The Bulletin of mathematical biophysics, vol. 9,
pp. 127–147, 1947.

[30] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”
Advances in neural information processing systems, vol. 30, 2017.

[31] J. Bassey, L. Qian, and X. Li, “A survey of complex-valued neural networks,”
arXiv preprint arXiv:2101.12249, 2021.

[32] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. Santos,
S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep complex networks
(2017),” arXiv preprint arXiv:1705.09792, 2017.

[33] S. Löwe, P. Lippe, M. Rudolph, and M. Welling, “Complex-valued autoen-
coders for object discovery,” arXiv preprint arXiv:2204.02075, 2022.

[34] R. Rao and D. Ruderman, “Learning lie groups for invariant visual perception,”
Advances in neural information processing systems, vol. 11, 1998.

[35] J. Sohl-Dickstein, C. M. Wang, and B. A. Olshausen, “An unsupervised algo-
rithm for learning lie group transformations,” arXiv preprint arXiv:1001.1027,
2010.

[36] K. Desai, B. Nachman, and J. Thaler, “Symmetry discovery with deep learn-
ing,” Physical Review D, vol. 105, no. 9, p. 096031, 2022.

[37] W. Rudin, “Fourier analysis on groups,” Bull. Amer. Math. Soc, vol. 70,
pp. 230–232, 1964.



G26 REFERENCES

[38] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the per-
ception of motion,” Josa a, vol. 2, no. 2, pp. 284–299, 1985.

[39] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133,
1943.

[40] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, “A survey
on contrastive self-supervised learning,” Technologies, vol. 9, no. 1, p. 2, 2020.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, pp. 8024–
8035, Curran Associates, Inc., 2019.

[43] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,
“JAX: composable transformations of Python+NumPy programs,” in GitHub,
2018.

[44] R. A. Horn, R. A. Horn, and C. R. Johnson, Topics in matrix analysis. Cam-
bridge university press, 1994.

[45] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press,
2012.

[46] R. Kakarala, “The bispectrum as a source of phase-sensitive invariants for
fourier descriptors: a group-theoretic approach,” Journal of Mathematical
Imaging and Vision, vol. 44, pp. 341–353, 2012.

[47] B. Sturmfels, Algorithms in invariant theory. Springer Science & Business
Media, 2008.

[48] F. Smach, C. Lemaître, J.-P. Gauthier, J. Miteran, and M. Atri, “Generalized
fourier descriptors with applications to objects recognition in svm context,”
Journal of mathematical imaging and Vision, vol. 30, pp. 43–71, 2008.

[49] R. Kakarala, “Completeness of bispectrum on compact groups,” arXiv preprint
arXiv:0902.0196, vol. 1, 2009.


	Acknowledgements
	Academic Ancestors
	Contents
	Overview
	Introduction
	The Geometry of Data
	Symmetries and Metrics
	Contributions of the Thesis
	Metric-Based Approaches
	Simplicial Complexes from Metrics
	Non-Parametric Density Estimation
	Metric and Contrastive Learning
	Symmetry-Based Approaches
	The Mathematics of Symmetries
	Group Convolutions
	Equivariant Representation Learning
	Relation to Disentanglement and Causality
	Relation to Robotics and Interactive Perception
	Harmonic Analysis, Invariant Networks and Symmetry Discovery
	Conclusions, Limitations and Future Work
	Conclusions
	Limitations and Future Work
	Summary of Included Papers
	Bibliography
	Included Publications
	 = Active Nearest Neighbor Regression Through Delaunay Refinement 
	Introduction
	Related Work
	Method
	Theoretical Results
	Experiments
	Conclusion and Future Work
	Ackowledgements
	Appendix
	References
	 = Voronoi Density Estimator for High-Dimensional Data: Computation, Compactification and Convergence 
	Introduction
	Compactified Voronoi Density Estimator
	Algorithmic Procedures
	Theoretical Properties
	Related Work
	Experiements
	Conclusions and Future Work
	Acknowledgements
	Appendix
	References
	 = An Efficient and Continuous Voronoi Density Estimator 
	Introduction
	Related Work
	Background
	Method
	Experiments
	Conclusions and Future Work
	Acknowledgements
	Appendix
	References
	 = Equivariant Representation Learning via Class-Pose Decomposition 
	Introduction
	The Mathematics of Symmetries
	Method
	Related Work
	Experiments
	Conclusions, Limitations and Future Work
	Acknowledgements
	Appendix
	References
	 = Equivariant Representation Learning in the Presence of Stabilizers 
	Introduction
	Related Work
	Group Theory Background
	Equivariant Isomorphic Networks (EquIN)
	Experiments
	Conclusions and Future Work
	Acknowledgements


	References
	 = Back to the Manifold: Recovering from Out-of-Distribution States 
	Introduction
	Related Work
	Background
	Method
	Experiments
	Conclusions and Future Work
	Acknowledgements

	References
	 = Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks  
	Introduction and Related Work
	Mathematical Background
	Theoretical Results
	Conclusions, Limitations, and Future Work
	Acknowledgements
	Appendix


	References










